Quaternion
Functions
Detailed Description
-
class
Quaternion: public RED::Object Quaternion for graphical operations.
The quaternion is of the form q = x*i + y*j + z*k + w.
Public Functions
-
SET_CID (CID_class_REDQuaternion) IMPLEMENT_AS()
-
Quaternion() Quaternion construction method.
Builds a unit quaternion ( 0, 0, 0, 1 ).
-
Quaternion(double iX, double iY, double iZ, double iW) Constructor.
Parameters: - iX – X dimension of the quaternion.
- iY – Y dimension of the quaternion.
- iZ – Z dimension of the quaternion.
- iW – W dimension of the quaternion.
-
Quaternion(const float data[4]) construction for a four floats array.
Parameters: data – array containing the four floating-point vector values.
-
Quaternion(const double data[4]) construction for a four double array.
Parameters: data – array containing the four double precision floating-point vector values.
-
virtual
~Quaternion() Destructor.
-
inline double
operator[](unsigned int iIndex) const Gets the n-th component of a quaternion.
Returns: The n-th component of the quaternion.
-
inline double &
operator[](unsigned int iIndex) Gets the n-th component of a quaternion in read-write mode.
Returns: A reference to the n-th component of the quaternion.
-
inline RED::Quaternion
operator+(const RED::Quaternion &iSource) const Addition operation.
Builds a new quaternion by the addition of two others.
Returns: the sum of the two input quaternions.
-
inline RED::Quaternion
operator-(const RED::Quaternion &iRight) const Subtraction operation.
Builds a new quaternion by the subtraction of two others.
Parameters: iRight – Right operand of the subtraction Returns: the subtraction of the two input quaternions.
-
inline RED::Quaternion
operator-() const Returns the opposite of the quaternion.
Returns: -‘this’
-
inline void
operator+=(const RED::Quaternion &iSource) Increment operation.
Adds the iSource quaternion to ‘this’.
Parameters: iSource – Added term.
-
inline void
operator-=(const RED::Quaternion &iSource) Decrement operation.
Subtracts the iSource quaternion to ‘this’.
Parameters: iSource – Subtracted term.
-
inline RED::Quaternion
operator*(double iScalar) const Multiplies the components of a quaternion with a scalar.
Parameters: iScalar – Number to multiply the quaternion with. Returns: The product of the quaternion with the scalar.
-
inline RED::Quaternion
operator*(const RED::Quaternion &iRight) const Multiplication of two vectors.
Parameters: iRight – Quaternion to multiply to this. Returns: The product of the two quaternions.
-
inline void
operator*=(double iScalar) Multiplies the components of the quaternion with a scalar.
Parameters: iScalar – Number to multiply the quaternion with.
-
inline void
operator*=(const RED::Quaternion &iRight) Multiplication of two quaternions.
Store in ‘this’ the result of the product of ‘this’ with iRight.
Parameters: iRight – Quaternion to multiply to this.
-
inline RED::Quaternion
operator/(double iScalar) const Divides the components of a quaternion by a scalar.
Parameters: iScalar – Number to divide the quaternion by. Returns: The division of the quaternion by the scalar.
-
inline void
operator/=(double iScalar) Divides the components of the quaternion by a scalar.
Parameters: iScalar – Number to divide the quaternion by.
-
inline bool
operator==(const RED::Quaternion &iOther) const Returns the result of an equality test between two quaternions.
Parameters: iOther – Reference to the quaternion to test with. Returns: true if the two quaternions are identical, false otherwise.
-
inline bool
operator!=(const RED::Quaternion &iOther) const Returns the result of a difference test between two quaternions.
Parameters: iOther – Reference to the quaternion to test with. Returns: true if the two quaternions are different, false otherwise.
-
inline double
GetLength() const Gets the length of the quaternion.
Returns: sqrt( x*x + y*y + z*z + w*w ).
-
inline double
GetLength2() const Gets the squared length of the quaternion.
Returns: The squared length of the quaternion.
-
inline double
Normalize() Normalizes the quaternion.
Calculates the length of the quaternion( x*x + y*y + z*z + w*w ) and divides the components by this length.
Returns: The length of the quaternion before normalization.
-
inline double
Dot(const RED::Quaternion &iQ) const Dot product of two quaternions.
Parameters: iQ – Right operand of the dot product. Returns: The dot product of the two quaternions.
-
inline void
Invert() ‘In-place’ inversion of ‘this’.
Computes the inverse of ‘this’, replacing the previous quaternion contents.
-
inline void
Conjugate() ‘In-place’ conjugate of ‘this’.
Computes the conjugate of ‘this’, replacing the previous quaternion contents.
-
void
Log(RED::Vector3 &oLog) const Logarithmic quaternion function.
Parameters: oLog – Returned log of the quaternion.
-
void
Exp(const RED::Vector3 &iValue) Exponential quaternion function.
Parameters: iValue – Value to compute the exponential.
-
void
Slerp(const RED::Quaternion &iQuatFrom, const RED::Quaternion &iQuatTo, double iWeight) Computes the Spherical Linear Interpolation between two quaternions.
Parameters: - iQuatFrom – Starting quaternion.
- iQuatTo – Ending quaternion.
- iWeight – weight value between 0 and 1.
-
void
Squad(const RED::Quaternion &iQuatFrom, const RED::Quaternion &iQuatTo, const RED::Quaternion &iInnerQuadrangleFrom, const RED::Quaternion &iInnerQuadrangleTo, double iWeight) Computes the Spherical Quadrangle Interpolation between two quaternions.
The inner quadrangles can be computed with RED::Quaternion::InnerQuadrangle.
For 2 quaternions ( i ) and ( i + 1 ) on a curve, the code is:
s1.InnerQuadrangle( q[ i - 1 ], q[ i ], q[ i + 1 ] ); s2.InnerQuadrangle( q[ i ], q[ i + 1 ], q[ i + 2 ] ); r.Squad( q[ i ], q[ i + 1 ], s1, s2, t );
Special case of the curve starting point 0:
s.InnerQuadrangle( q[ 0 ], q[ 1 ], q[ 2 ] ); r.Squad( q[ 0 ], q[ 1 ], q[ 0 ], s, t );
Special case of the curve ending point n:
s.InnerQuadrangle( q[ n - 2 ], q[ n - 1 ], q[ n ] ); r.Squad( q[ n - 1 ], q[ n ], s, q[ n ], t );
Parameters: - iQuatFrom – Starting quaternion.
- iQuatTo – Ending quaternion.
- iInnerQuadrangleFrom – Inner quadrangle for the starting quaternion.
- iInnerQuadrangleTo – Inner quadrangle for the ending quaternion.
- iWeight – weight value between 0 and 1.
-
void
InnerQuadrangle(const RED::Quaternion &iQuatBefore, const RED::Quaternion &iQuat, const RED::Quaternion &iQuatAfter) Computes the inner quadrangle of a quaternion based on the two surrounding quaternions.
Parameters: - iQuatBefore – The quaternion before.
- iQuat – The quaternion for which to compute the inner quadrangle.
- iQuatAfter – The quaternion after.
-
void
SetRotationMatrix(const RED::Matrix &iRotationMatrix) Sets the quaternion from a rotation matrix.
Parameters: iRotationMatrix – Rotation matrix to set the quaternion from.
-
void
GetRotationMatrix(RED::Matrix &oRotationMatrix) const Gets the rotation matrix from this quaternion.
Parameters: oRotationMatrix – Returned rotation matrix.
-
void
SetAxisAngle(const RED::Vector3 &iAxis, double iAngle) Sets the quaternion from an axis angle rotation .
Parameters: - iAxis – The rotation axis.
- iAngle – The rotation angle.
-
void
GetAxisAngle(RED::Vector3 &oAxis, double &oAngle) const Gets the axis angle rotation from this quaternion.
Parameters: - oAxis – Returned rotation axis.
- oAngle – Returned rotation angle.
-
inline void
Set(double iX, double iY, double iZ, double iW) Sets the four component of a quaternion.
Parameters: - iX – First component.
- iY – Second component.
- iZ – Third component.
- iW – Fourth component.
-
inline double
X() const Returns: The X dimension of the quaternion.
-
inline double
Y() const Returns: The Y dimension of the quaternion.
-
inline double
Z() const Returns: The Z dimension of the quaternion.
-
inline double
W() const Returns: The W dimension of the quaternion.
Public Members
-
double
_x X dimension of the vector.
-
double
_y Y dimension of the vector.
-
double
_z Z dimension of the vector.
-
double
_w W dimension of the vector.
Public Static Attributes
-
static const RED::Quaternion
ZERO Zero quaternion.
-
static const RED::Quaternion
IDENTITY Identity quaternion.
-