EISOE isorrcirsc2 N 570 E

— Date: 2009-07-21

ISO/TC171/SC2
Document Management Applications
Application Issues
SECRETARIAT: ANSI

TITLE : 3 month WD ballot for Document management — 3D use of product
representation compact (PRC) format — Part 1: Version 1

SOURCE : ISO/TC 171 SC2 Secretariat

PROJECT

STATUS : Working draft

REQUESTED : Member countries are requested to review the draft and submit
ACTION their votes via the electronic balloting system by 16 October 2009.
DISTRIBUTION : P, 0 and L Members

Address Reply to:

Secretariat - ISO TC171 SC2- Association for Information and Image Management International
1100 Wayne Ave, Suite 1100, Silver Spring, MD 20910-5603

Telephone: 301-755-2682; Facsimile: 240-494-2682; e-mail: bfanning@aiim.org

© 1SO 2008 — All rights reserved

ISOTC 171/SC 2N

Date: 2008-11-8

ISO/WD

ISO TC 171/SC 2IWG 7

Secretariat: ANSI

Document management — 3D Use of Product Representation Compact

(PRC) Format — Part 1: Version 1

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to

change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of

which they are aware and to provide supporting documentation.

Document type: International Standard
Document subtype:

Document stage: (20) Preparatory
Document language: E

WORKING DRAFT ISO/WD

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards
development process is permitted without prior permission from I1SO, neither this document nor any extract
from it may be reproduced, stored or transmitted in any form for any other purpose without prior written
permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as
shown below or to ISO's member body in the country of the requester:

[Indicate the full address, telephone number, fax number, telex number, and electronic mail address, as
appropriate, of the Copyright Manger of the ISO member body responsible for the secretariat of the TC or
SC within the framework of which the working document has been prepared.]

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

© ISO 2008 — Al rights reserved 1

Contents

COPYITIGNE NMOTICE ..otttk etk e e bt e e st b et et eea bt e bt e bt e et e ke e e e e nae e e b e s 1
1 ST 0 o= PN 10
2 NOTMALIVE FEFEIENCES ... ittt ettt ettt e e e e st e et e arte e s seeenteesneeesseeanteesneeensenannees 10
3 Terms and AefiNITIONS .uiiiii ittt et e et e e teessee e teeanteesseeeteeaneeenreeans 10
4 Document Syntax Conventions

4.1 Conventions

4.2 Example Structure. ...

5 PRC file concepts

5.1 The PRC file

5.2 Versioning

53 Unique Identifiers..

5.3.1 General

5.3.2 File Structure

5.3.3 Base Entities ...

5.3.4 CAD systems.........

5.4 Current Data Values

5.5 UserData..................

5.6 Units

5.7 Tolerances................

5.8 Compressed File Sections

5.9 Compressed Geometry

5.10 Compressed Tessellation

6 [S O | I 0T 4 =T 4| £ RSO PSTOTR 18
6.1 FileHeader

6.1.1 General

6.1.2 FileStructureDescription

6.1.3 UncompressedFiles

6.2 FileStructure

6.2.1 General

6.2.2 FileStructureHeader

6.2.3 FileStructureSchema

6.3 PRC Schema..........

6.3.1 General......

6.3.2 Entity_schema_definition

7 Base Entities

7.1 General

7.2 Abstract Root Types

7.2.1 Entity Types

7.22 PRC_TYPE_ROOT.... .. 23
7.23 PRC_TYPE_ROOT_PRCBase .. 23
7.2.4 PRC_TYPE_ROOT_PRCBaseWithGraphics. .24
7.25 PRC_TYPE_ROOT_PRCBaseNoReference.. .. 26
7.3 Structure and Assembly

7.3.1 Entity Types

7.3.2 PRC_TYPE_ASM

7.3.3 PRC_TYPE_ASM_ModelFile

7.3.4 PRC_TYPE_ASM_FileStructure........

7.3.5 PRC_TYPE_ASM_FileStructureGlobals .

7.3.6 PRC_TYPE_ASM_FileStructureTree..........

7.3.7 PRC_TYPE_ASM_FileStructureTessellation...

2 © ISO 2008 — All rights reserved

7.3.8
7.3.9
7.3.10
7.3.11
7.3.12
7.3.13

7.4.1
7.4.2
743
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9
7.4.10
7.4.11
751
75.2
7.5.3
75.4

7.5.6

757

7.5.8

7.5.9

7.5.10
7.5.11
7.5.12
7.5.13
7.5.14
7.5.15
7.5.16
7.5.17
7.5.18
7.5.19
7.5.20

7.7.6
707

PRC_TYPE_ASM_FileStructureGeometry
PRC_TYPE_ASM_FileStructureExtraGeometry .. .
PRC_TYPE_ASM_ProductOccurrence.......... ...38
PRC_TYPE_ASM_PartDefinition........ .43
PRC_TYPE_ASM_Filter.........
CompressedUniqueld ..
Miscellaneous Data
Entity Types
PRC_TYPE_MISC... .
PRC_TYPE_MISC_Attribute............ ...46
PRC_TYPE_MISC_EntityReference ..
PRC_TYPE_MISC_MarkupLinkedltem.
PRC_TYPE_MISC_ReferenceOnPRCBase.
PRC_TYPE_MISC_ReferenceOnTopology
PRC_TYPE_MISC_CartesianTransformation...
PRC_TYPE_MISC_GeneralTransformation...
ContentEntityReference............ccccoceene
Transformation
Graphics........
Entity Types
PRC_TYPE_GRAPH..
PRC_TYPE_GRAPH_Style
PRC_TYPE_GRAPH_Material
PRC_TYPE_GRAPH_Picture
PRC_TYPE_GRAPH_TextureApplication
PRC_TYPE_GRAPH_TextureDefinition......
PRC_TYPE_GRAPH_TextureTransformation
PRC_TYPE_GRAPH_LinePattern
PRC_TYPE_GRAPH_FillPattern
PRC_TYPE_GRAPH_DottingPattern
PRC_TYPE_GRAPH_HatchingPattern
PRC_TYPE_GRAPH_SolidPattern
PRC_TYPE_GRAPH_VpicturePattern
PRC_TYPE_GRAPH_AmbientLight ..
PRC_TYPE_GRAPH_PointLight.....
PRC_TYPE_GRAPH_DirectionallLight.
PRC_TYPE_GRAPH_SpotLight........ccccooeinns
PRC_TYPE_GRAPH_SceneDisplayParameters
PRC_TYPE_GRAPH_Camera
Representation Items..........
Entity Types
PRC_TYPE_RI...ccooeiiiiiiiiiiciien,
PRC_TYPE_RI_Representationltem .
PRC_TYPE_RI_BrepModel
PRC_TYPE_RI_Curve
PRC_TYPE_RI_Direction
PRC_TYPE_RI_Plane
PRC_TYPE_RI_PointSet
PRC_TYPE_RI_PolyBrepModel
PRC_TYPE_RI_PolyWire.......
PRC_TYPE_RI_Setccccvvvercnene
PRC_TYPE_RI_CoordinateSystem
Markup
Entity Types .
PRC_TYPE_MKP....
PRC_TYPE_MKP_View ...
PRC_TYPE_MKP_Markup..
PRC_TYPE_MKP_Leader..........
PRC_TYPE_MKP_Annotationltem
PRC_TYPE_MKP_ANNOLAIONSEL ...ttt

© ISO 2008 — Al rights reserved 3

7.9.9
7.9.10
7.9.11
7.9.12
7.9.13
7.9.14
7.9.15
7.9.16
7.9.17
7.9.18
7.9.19
7.9.20
7.9.21
7.9.22
7.10
7.10.1
7.10.2
7.10.3
7.10.4
7.10.5
7.10.6
7.10.7
7.10.8
7.10.9

7.10.10 PRC_TYPE_CRV_Equation..
7.10.11 PRC_TYPE_CRV_Helix01
7.10.12 PRC_TYPE_CRV_Hyperbola
7.10.13 PRC_TYPE_CRV._Intersection.
7.10.14 PRC_TYPE_CRV_Line....
7.10.15 PRC_TYPE_CRV_Offset....
7.10.16 PRC_TYPE_CRV_Parabola
7.10.17 PRC_TYPE_CRV_PolyLine
7.10.18 PRC_TYPE_CRV_Transform

7.11

7.11.1
7.11.2
7.11.3
7.11.4
7.11.5
7.11.6

PRC_TYPE_MKP_AnnotationReference
Tessellation
Entity Types........
PRC_TYPE_TESS.....
PRC_TYPE_TESS_Base.
ContentBaseTessData....
PRC_TYPE_TESS_3D
PRC_TYPE_TESS_Face
PRC_TYPE_TESS_3D_Wire.
PRC_TYPE_TESS_Markup................
PRC_TYPE_TESS_3D_COMPRESSED
Topology

Entity Types........
PRC_TYPE_TOPO....
PRC_TYPE_TOPO_Context
PRC_TYPE_TOPO_ltem
PRC_TYPE_TOPO_MultipleVertex
PRC_TYPE_TOPO_UniqueVertex .
PRC_TYPE_TOPO_WireEdge.....
PRC_TYPE_TOPO_Edge......
PRC_TYPE_TOPO_CoEdge
PRC_TYPE_TOPO_Loop
PRC_TYPE_TOPO_Face ..
PRC_TYPE_TOPO_Shell
PRC_TYPE_TOPO_Connex
PRC_TYPE_TOPO_Body...
ContentBody
ContentWireEdge
PRC_TYPE_TOPO_SingleWireBody
PRC_TYPE_TOPO_BrepData
PRC_TYPE_TOPO_SingleWireBodyCompress
PRC_TYPE_TOPO_BrepDataCompress
PRC_TYPE_TOPO_WireBody...........
References....

Entity Types.....
PRC_TYPE_CRV

PRC_TYPE_CRV_Base
PRC_TYPE_CRV_Blend02Boundary
PRC_TYPE_CRV_NURBS
PRC_TYPE_CRV_Circle.....
PRC_TYPE_CRV_Composite
PRC_TYPE_CRV_OnSurf..
PRC_TYPE_CRV_Ellipse...

Entity Types........

PRC_TYPE_SURF....
PRC_TYPE_SURF_Base ...
PRC_TYPE_SURF_Blend01.
PRC_TYPE_SURF_Blend02
PRC_TYPE_SURF_BIENAO3.......cooiiiiiiiiiiiiii bbb s

© ISO 2008 — All rights reserved

7.11.7
7.11.8
7.11.9

7.11.10 PRC_TYPE_SURF_Cylindrical .
7.11.11 PRC_TYPE_SURF_Offset

7.11.12 PRC_TYPE_SURF_Pipe.....
7.11.13 PRC_TYPE_SURF_Plane
7.11.14 PRC_TYPE_SURF_Ruled
7.11.15 PRC_TYPE_SURF_Sphere....
7.11.16 PRC_TYPE_SURF_Revolution.
7.11.17 PRC_TYPE_SURF_Extrusion ...
7.11.18 PRC_TYPE_SURF_FromCurves .
7.11.19 PRC_TYPE_SURF_Torus..........
7.11.20 PRC_TYPE_SURF_Transform
7.11.21 PRC_TYPE_SURF_Blend04

7.12

7121
7.12.2
7.12.3
7.12.4
7.12.5
7.12.6
7.12.7
7.12.8
7.12.9

7.12.10 PRC_TYPE_MATH_FCT_3D_Linear..
7.12.11 PRC_TYPE_MATH_FCT_3D_NonLinea

PRC_TYPE_SURF_NURBS
PRC_TYPE_SURF Cone.......
PRC_TYPE_SURF Cylinder .

Mathematical Operator.......
Entity Typesc......
PRC_TYPE_MATH..............
PRC_TYPE_MATH_FCT_1Dcccc...

PRC_TYPE_MATH_FCT_1D_Polynom
PRC_TYPE_MATH_FCT_1D_Trigonometric
PRC_TYPE_MATH_FCT_1D_Fraction
PRC_TYPE_MATH_FCT_1D_ArctanCos.
PRC_TYPE_MATH_FCT_1D_Combination
PRC_TYPE_MATH_FCT_3D

Other Data Classes...
Other data classes....
Parameter Range
Infinite_param ..
Interval
Parameterization.
Domain...........c.....
UVParameterization
BaseTopology
BaseGeometry
Basic types for geometry
Vector2d
Vector3d
BoundingBox
UserData...........

UserDataStream..
UserDataSubSection

Schema Definition

Schema Processing
EPRCSchema_Data_Boolean
EPRCSchema_Data_Double.....
EPRCSchema_Data_Character
EPRCSchema_Data_Unsigned_Integer ..
EPRCSchema_Data_lInteger
EPRCSchema_Data_String
EPRCSchema_Father_Type
EPRCSchema_ Vector_2D....
EPRCSchema_ Vector_3D.
EPRCSchema_Extent_1D..
EPRCSchema_Extent_2D

© ISO 2008 — Al rights reserved 5

9.3.12 EPRCSchema_Extent_3D
9.3.13 EPRCSchema_Ptr_Type....
9.3.14 EPRCSchema_Ptr_Surface
9.3.15 EPRCSchema_Ptr_Curve..
9.3.16 EPRCSchema_For
9.3.17 EPRCSchema_SimpleFor
9.3.18 EPRCSchema_If and EPRCSchema_Else
9.3.19 EPRCSchema_Block_Start
9.3.20 EPRCSchema_Block_Version.
9.3.21 EPRCSchema_Block_End
9.3.22 EPRCSchema_Value_Declare .
9.3.23 EPRCSchema_Value_Set..................

9.3.24 EPRCSchema_Value_DeclareAndSet..
9.3.25 EPRCSchema_Value
9.3.26 EPRCSchema_Value_Constant
9.3.27 EPRCSchema_Value_For............
9.3.28 EPRCSchema_Value_Curvels3D
9.3.29 EPRCSchema_Operator_MULT..
9.3.30 EPRCSchema_Operator_DIV...
9.3.31 EPRCSchema_Operator_ADD.
9.3.32 EPRCSchema_Operator_SUB
9.3.33 EPRCSchema_Operator_LT
9.3.34 EPRCSchema_Operator_LE
9.3.35 EPRCSchema_Operator_GT
9.3.36 EPRCSchema_Operator_GE
9.3.37 EPRCSchema_Operator_EQ
9.3.38 EPRCSchema_Operator_NEQ.
9.4 Schema Examples
9.4.1 General
9.4.2 An existing entity
9.4.3 Existing PRC_TYPE_CRV_Polylin
9.4.4 Add afield to existing entity
9.45 Add anew curve
9.4.6 Multiple revisions to an entity type

10 Data Types for Physical File
10.1 General
10.2 Uncompressed Types
10.2.1 General
10.2.2 UncompressedFiles
10.2.3 UncompressedBlock
10.2.4 UncompressedUnsignedinteger
10.3 Compressed Types..
10.3.1 General................

10.3.2 Bits
10.3.3 Boolean..
10.3.4 Character
10.3.5 CharacterArray

10.3.6 FloatAsBytes... . 249
10.3.7 String............. . 249
10.3.8 ShortArray . 250
10.3.9 Double . 250

10.3.10 DoubleWithVariableBitNumber ..
10.3.11 Integer
10.3.12 IntegerWithVariableBitNumber
10.3.13 CompressedintegerArray.....
10.3.14 UnsignedInteger
10.3.15 UnsignedIntegerWithVariableBitNumber ..
10.3.16 CompressedIndiCeArrayccoceeeuene
10.3.17 NumberOfBitsThenUnsignedIinteger

6 © ISO 2008 — All rights reserved

10.3.18 COMPIESSEUAENTI Y TY P 1iiiiiiiiiie ittt ettt ettt et e e e e ane e e beeaneeeateeanteesmeeeaneeaneeeaneeenneeans 250

11
111
11.2
11.3
114
115
11.6
b
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17

11.17.1 General
11.17.2 Data definition for double storage.

11.18 Procedure for WriteDouble

12 Tessellation Compression Support
12.1 General

12.2 Huffman Algorithm ...

12.3 Basis pseudocode....

Bibliography

1/0 Algorithms
GetNumberOfBitsUsedToStoreUnsignedInteger
MakePortable32BitsUnsigned
WriteBits........

WriteString ...
WriteFloatAsBytes.
WriteCharacterArray
254
WriteShortArray
WriteCompressedIintegerArray
WriteCompressedindiceArray
WriteUnsignedIinteger
WriteINtegercccoverieeiieiiee e
WritelntegerWithVariableBitNumber ...
WriteUnsignedintegerWithVariableBitNumber
WriteDoubleWithVariableBitNumber
WriteNumberOfBitsThenUnsignedinteger
WriteCompressedEntityType
WriteDouble

© ISO 2008 — Al rights reserved 7

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through 1SO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an

International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 1000x was prepared by Technical Committee ISO/TC 171, Document Management Applications,
Subcommittee SC 2, Application Issues.

8 © ISO 2008 — All rights reserved

Introduction

The data representations in PRC allows 3D design data, typically created in CAD and PLM systems, to be
viewed and interrogated by visualization applications and to be integrated into complex documents.

This document specifies a wide range of data forms. The wide range is necessary to:

* Achieve a high fidelity, visually equivalent representation of 3D design data produced by an
advanced CAD or PLM system without requiring the original application. * Allow applications to
compute high accuracy product shape measurements.

PRC is intended to complement native or open standard CAD and PLM formats as a compact, concise binary
form for visualization and documentation. PRC is not intended as a data format for CAD interoperability or
use in factory automation systems, e.g. automated manufacturing and inspection systems, which is addressed
by the 1ISO 10303 standards.

© ISO 2008 — Al rights reserved 9

Document management — 3D Use of Product representation
compact (PRC) format — Part 1: Version 1

1 Scope
This International Standard describes Version 1 of a product representation compact (PRC) file format for
three dimensional (3D) content data. This format is designed to be included in PDF and other similar
document formats for the purpose of 3D visualizaiton and exchange. It can be used for creating, viewing, and
distributing 3D data in document exchange workflows. It is optimized to store, load, and display various kinds
of 3D data, especially that coming from computer aided design (CAD) systems.
This International Standard does not apply to:

— Method of electronic distribution

— Converting CAD system generated datasets to the PRC format

— Specific technical design, user interface, implementation, or operational details of rendering

— Required computer hardware and/or operating systems

2 Normative references

The following referenced documents are indispensable for the application of this International Standard. For
dated references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

1ISO 12651: 1999, Electronic imaging — Vocabulary

ISO 24517-1: 2008, Document management — Engineering document format using PDF — Part 1: Use of PDF
1.6 (PDF/E-1)

1ISO 32000-1: 2008, Document management — Portable document format — Part 1: PDF 1.7

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 32000-1, ISO 24517-1 and ISO
12651 and the following apply.

10 © IS0 2008 — Al rights reserved

4 Document Syntax Conventions

4.1 Conventions

The following conventions are used within this document to describe data within a PRC File.

Terms highlighted in bold within this document signify field names in the descriptions of entity types.

A table with three columns defines the data within a contiguous portion of the file.

The first column indicates if the data is required or is optional. Optional data is always preceeded by a flag
indicating if the data is present or not. If the flag is a Boolean variable, the Option indicates what data is
present if the flag is TRUE or is FALSE. If the flag is an integer, the Option indicates the class of data which is
present and the flag indicates the number of items present. If the Option is an enumerated type, the Option
indicates the type of data present for that value of the flag. If the flag is an Unsignedinteger, the Option
indicates what array of data is present

The second column indicates the type of data that is stored. This might be

e asimple data type such as a Boolean, Unsignedinteger, or Double

o A simple class of data such as PRC_TYPE_TOPO_Body or PtrTopology where the name of the class
is used to define the data stored for that class

e An ArrayOf [<data class>] which indicates an array of data of the specified class. Elements of an
array are referenced beginning at 0.

The third column provides a description or other information relative to the field.

4.2 Example Structure

Table 1 — PRC file structure example

Required or Option Data Type Data Description

Required Boolean TRUE if the data is present; else
FALSE

Option:TRUE <data class 1> Data if flag is TRUE

Option:FALSE

<data class 2>

Data if flag is FALSE

Required

PRC_TYPE_TOPO_Body

Data for a topological body

Required

<enumerated type> or integer

Flag indicating what type of
data follows.

Option: enumeration 1

<data class 3>

Data for a specified value of
the enumerated type

Option: enumeration 2

<data class 4>

Data for another value of the
enumerated type

© ISO 2008 — Al rights reserved

11

Required Unsignedinteger Number of members in array

Required ArrayOf [<data class 5>] An array whose members are
of the specific <data class>

5 PRCfile concepts

5.1 The PRC file

A PRC File is a sequential binary file, written in a way to make the file portable across machine architectures
and operating systems.

PRC is optimized to store various kinds of 3D data, especially those coming from computer-aided design
(CAD) systems. Most of the main constructs of CAD systems are supported within the PRC File Format:

Assemblies and parts

Trees of 3D entities (coordinate systems, wireframes, surfaces, and solids)
Exact geometry representation for curves, surfaces

Tessellated (triangulated) representation

Markup data

PRC is meant to be multipurpose. There are two ways to store exact geometry and tessellation depending on
the usage of the file and on the original information:

e Regular compression is used to directly represent CAD data without loss or transformation from
the originating CAD system.

e High compression is used to store very small files, which have a specified physical tolerance from
the originating shape. The tolerance is typically 0,001 mm for exact geometric data and 0,01 mm for
tessellation data.

Each PRC File corresponds to a single model file (7.3.3) which defines the root product occurrences within the
FileStructures of the PRC File. A PRC File is a collection of FileStructures which are independent from each
other and can come from various authoring PRC File Writers. A FileStructure is the representation of an
independant physical file denoting an independent 3D part, assembly, etc. within a PRC file. Hence, there is
one header for each FileStructure with specific information and one global header for the model file which
contains information about the PRC File Writer that assembled all these individual FileStructures into the final
PRC File. Header sections gather primarily information on file version, FileStructure ids and offsets for reading
/ skipping sections.

Each FileStructure contains one or more product occurrences (7.3.10.2). The product occurrences denote the
assembly hierarchy of the FileStructure. A product occurrence can have child nodes (called son nodes), which
are also product occurrences. There is exactly one root product occurrence in each FileStructure. The root
product occurrence is the only entry point to the FileStructure. (refer to Figure 1 below)

In parallel to the FileStructures, the model file also contains an array of root product occurrences that
comprise the starting point for the entire assembly description. A product occurrence may refer to a
corresponding part definition (see 7.3.11) which in turn contains:

e Geometrical data stored in a tree of representation items (see 7.6.3)
e An optional tree of part markups, grouped into annotation entities and views (see 7.7.2)

A product occurrence can contain:
e Atree of product markups

e Filters used to redefine the loading and presentation of data defined in the son product
occurrences or in the part definition (see 7.3.12)

12 © 1SO 2008 — All rights reserved

The representation items are defined through a combination of tessellation or topology and geometry data,
which may be highly compressed. The markups are defined by tessellation data.

F.S. Tire

P.O. Nuts:
P.O. BOItS}ZE
P.O. Washers
P.O. Nutst
P.O. BOItS%:E
P.O. Washer:

P.O. leb

F.S. Bolt

‘P.O. Washer}:l‘% P.D. Washer %

P.O. Rim}—# P.D.Rim PO.
- PD.

F.S. Washer
Key:
= Prototype
[IT] = son Object

= Product Occurrence
= Product Definition

F.S.Rim

FS. = File Structure

Figure 1 — Tessellation data

To optimize reading, a PRC File is arranged so that referenced entities are read before being referenced.
Therefore, the FileStructures are ordered using parts, then subassemblies, and finally, the top (root)

assembly.

A PRC File is composed of one header section, which starts with uncompressed data, one or more
FileStructures, and one model file (PRC_TYPE_ASM_ModelFile) data section at the end, each individually
compressed. Refer to 7.3.10 for more information about the PRC file structure.

Section

Sub Sections

Compression

Description

FileHeader

Uncompressed

Defines originating author of the
file; specifies start, and possibly
end, location of other sections in
file

File Structure 1

FileStructureHeader

Uncompressed

Identifiers of other File Structures
referenced from within this
FileStructure;

Schema

Compressed

Description of changes between
minimal version and authoring
version of the FileStructure within
the PRC File Format Specification

Globals

Compressed

Referenced FileStructures and
colors, line styles, and coordinate
systems for each tree entity of the
FileStructure

Tree

Compressed

a description of the tree of items
(product occurrences, part
definitions, representation items,
and markup)

Tesselation

Compressed

All tessellated (triangulated) data
in the leaf entities of the tree
(representation items and

© 1SO 2008 — All rights reserved

13

markups).

Geometry Compressed All exact geometry and topology
data of the leaf entities of the tree
(representation items)

Extra Geometry Compressed Geometry summary data, which
allow for partial loading of the
FileStructure without loading the
entire geometry

Additional FileStructure sections in

the PRC File

File Structure N Compressed Last FileStructure section in the
PRC File

Schema ModelFile Schema Compressed Description of changes between

minimal version and authoring
version of the ModelFile Section of
the PRC File Format Specification

Model File Data PRC_TYPE_ASM_ModelFile Compressed

5.2 Versioning

PRC file versions have at least 4 digits. The first digit is the year modulo 2000, and the next three digits
represent the number of the day in the year. For example 10300 represents the 300th day of the year 2010.

A PRC File Writer is a software application which writes a particular PRC file. Similarly, a PRC File Reader is
a software application which reads a particular PRC file.

A file version is used to define the particular version of the PRC Format Specification that a PRC File Reader
or PRC File Writer comforms to. For instance, this draft version of the PRC Format Specification is file version
8137 <<Editor's note: to be updated upon submission>>. The current_version is the maximum file version
that a PRC File Reader software or PRC File Writer software conforms to.

The authoring_version represents the version of the PRC Format Specification that the PRC File Writer
conformed to at the time data contained in the PRC File was written. (It can also represent a FileStructure
within a PRC File. Each file structure within a PRC file is independant and can be moved to another PRC file
without parsing. It is thereby possible for any FileStructure within a PRC File to be written to a different PRC
Format Specification).

The minimal_version_for_read represents the minimal file PRC Format Specification version that a PRC
File Reader can successfully read. If a PRC File Reader conforms to a PRC Format Specification with a
current_version number lower than this minimal_version_for_read an error should occur.

If minimal_version_for_read is lower than authoring_version, the PRC File Writer must write a schema
description in the PRC File providing the differences between the two PRC Format Specifications. This
description will enable a PRC File Reader to read and skip new information, since these new data cannot be
interpreted as they are from a newer version.

A PRC File schema contains a description of new fields or new entity types added between the
minimal_version_for_read and the authoring_version. See 6.3 for a description of a schema.

14 © 1SO 2008 — All rights reserved

A PRC File Reader uses the information in the schema to read and skip new information:

o After reading each entity type, the schema information is queried and new data are skipped
accordingly, following the tokens.

e Each time an entity type is read, if the type is unknown, the schema is searched and its data is
skipped.

5.3 Unique Identifiers

5.3.1 General

A PRC File reader/writer must generate (writer) or interprete (reader) unique identifiers for information within
the PRC File. Each FileStructure within a PRC File has an identifier (UUID) which uniquely identifies this
particular FileStructure among all of the FileStructures within the PRC File. Within each FileStructure, unique
identifiers for referenceable entities are generated using the order that they are first encountered in the
FileStructure. Thus, for instance, the first referenceable entity in the FileStructure has the number 1 as its
identifier. The second referenceable entitity has the number 2.

5.3.2 File Structure

A PRC FileStructure is identified by an identifier (see FileStructureUncompressedUniquelD) which is
unigue among all of the FileStructures within a single PRC File.

The method to calculate a unique identifier for a given FileStructure is not part of the PRC Format
Specification. However, the last 32-bit unsigned integer of the UUID is interpreted as seconds elapsed from
Jan 1st 1970. This date represents the date of creation of the PRC FileStructure. Since first PRC specification
was created in June 20086, this value should be greater than 1149770868. This restriction may be removed in
future versions. This methodology provides a good compromise between enforcing unique UUIDs (which can
become complicated) and avoiding conflicts in practice, thereby enabling different organizations to have
different strategies to handle UUIDs and still avoid conflicts in practice.

The rest of the calculation method is left to the user. This approach offers an advantage, for example, such as
when there is some intent to repurpose FileStructures inside other PRC files without entirely rewriting them.

5.3.3 Base Entities

The PRC format provides support for referencing entities. See Entity Types in 7.2.1 for a list of entity types
whose entities are referenceable.

The purpose of using references on entities is to enable users to handle the same entity several times without
any duplication of data, either by any other program, or by another structure in the same or another PRC file.

A referenceable entity is retrieved using the following:
e The UUID of the FileStructure.
e The entity's unique identifier (a non-zero unsigned 32-bit integer) within the FileStructure.

Just as the FileStructure UUID is unique among all of the FileStructures in the PRC File, the entity identifier is
unique inside a FileStructure for all referenceable entities.

A PRC File Writer must ensure that two referenceable entities inside the same FileStructure do not have the
same identifier. The next available index within a FileStructure is the maximum value that has been assigned
for identifiers to date, and is stored in the PRC File (see 7.3.4) so it is possible to safely add new entities to a
FileStructure and assign them a unique identifier greater than this maximum value.

Data within the FileStructure tessellation and geometry sections are not accessible from outside the
FileStructure using the approach for referenceable entities. These data are referenced only by data within the

© IS0 2008 — All rights reserved 15

tree section (see 5.1 above) of the same FileStructure. However, it is possible (see 7.4.7) to reference
topological data from outside the particular FileStructure which the topological entity lies in. This is restricted
to faces in the current version of PRC but may be extended to other data in future versions of the format.

5.3.4 CAD systems

In addition to the unique identifier mechanisms described above, the PRC File Format Specification provides
for storage of identifiers indicating the originating CAD system. This is done using two other identifiers
indicating whether the identifier is persistent. An identifier is persistent if it remains the same even if the CAD
file was modified, as long as the corresponding item was not destroyed. CAD identifiers and their persistence
are stored as information in PRC strictly to support external workflows. These identifiers by themselves only
exist to convey information and do not play any role in PRC.

5.4 Current Data Values

A PRC File reader/writer must implement the concept of CURRENT for various data. This enables smaller file
sizes since duplicate data need not be written to the file. It also enablesfaster readers because some of the
data is not being read. Default initial values are in parentheses.

e Current name (NULL)

e Current graphics
o Index of layer (-1)
o Index of line style (-1)
o Behavior bit field (-1)

Current values are updated as they are encountered in the file. Values are reset when serialization is flushed
at the end of every flate-compressed section (see flate compression).

5.5 UserData

The PRC File format provides a mechanism for a PRC File Writer to write private data within various sections
of a PRC File. Such data consists of writing a bit stream of data containing the size of the bit stream followed
by the specified number of bits. Thus, any PRC File Reader can read the bit stream and can even resave the
private data, but it may not be able to interpret the data.

Each FileStructure within a PRC File may contain UserData. UserData are defined in conjunction with an
application unique identifier (UUID) which allows for their interpretation. This application identifier is stored in
the FileStructurerHeading. By default, any user data within the FileStructure is assumed to be written by this
one application. However, UserData may contain streams from different applications. Therefore, different
application UUIDs are stored accordingly with each of these other data. UserData are meant to be interpreted
only by software which is aware of its meaning according to a given authoring application UUID. A conforming
PRC File Reader can either ignore those UserData, or interpret them according to their application UUID.
PRC also allows applications to define special attributes which behave similarly to UserData, as discussed in
7.4.3.

Unique application identifiers are assigned through Adobe Systems, initially, and probably ISO in the long
term. <<Editor's note: this is for determination by 1SO>>. Each company should have it's own unique

application identifier, and if they want to share data with another company, they should share application
identifiers.

5.6 Units

It is mandatory that the units of a PRC File be defined. This should be done at both the model file level (see
7.3.3) AND at the product occurrence level (see 7.3.10). The unit can come from an actual CAD file and can

16 © IS0 2008 — Al rights reserved

therefore be considered reliable to represent physical values in the data. If a unit is valid/reliable, the flag
unit_from_CAD_file must be set to true. However, some formats (e.g. stl) do not contain any unit.
Regardless, it is mandatory to define one unit at both the model file level AND at the product occurrence level .

The unit used is the first valid unit in the ModelFile / ProductOccurrence chain. If a valid unit is defined at the
ModelFile level, it will apply to all product occurrences. Once a valid unit is found, the remainder of the data is
interpreted with respect of that unit, even for occurrences higher in the product occurrence hierarchy. In other
words, if a product occurrence having no valid unit has a son with a valid unit, it is assumed that the entire
hierarchy of model file and product occurrence are to be interpreted and used according to this unit. If no valid
unit is found at either the ModelFile level or any ProductOccurrence level (i.e. unit_from_CAD_file is always
set to false), a conforming PRC File Reader must clearly indicate that the unit defined is not valid for
measurement purposes.

5.7 Tolerances
PRC distinguishes between several notions of tolerances:

e A first notion of tolerance represents the maximum deviation between compressed and original data,
as introduced by the lossy compression of geometry or topology. When provided, this tolerance is a
user-defined value which represents a physical length given with a unit.

e A second notion of tolerance is introduced by numerical uncertainty inherent in every 3D modelling
system. This form of tolerance is non-dimensional. Its purpose is to perform consistent numerical
operations. This tolerance value corresponds to coincidence (e.g. of two 3D vertices) and is generally
defined in conjunction with a minimal value representing zero and a maximal value representing
infinity. For instance, a system might define coincidence at le-3, zero as any value less than 1le-12
and infinity as any value greater than 1e6. Then, additional logic outside the modelling system should
define the unit so that the numerical values can be interpreted by the computer as physical values (i.e.
in a particular unit).

In PRC, the 3D modelling system corresponds to entities in tessellation section (7.8) and topology section
(7.9). Hence the various tolerances stored within these sections are always numerical values with no unit.
PRC never stores a tolerance which can be directly interpreted as a physical value. For instance,
brep_data_compressed_tolerance in 7.9.18 which represents the deviation introduced between original
data and compressed one is stored without unit, even if it might be derived from a user interface which takes
those units into account. Then, outside this 3D modelling system, unit is defined in ProductOccurrences and
ModelFile as discussed in previous chapter. The physical interpretation of those tolerances should then be
done from both indications. For instance, if a tolerance in a topology section is stored as 0,001 and if the unit
of the ProductOccurrence it belongs to is 1000. (meter), then the physical tolerance on data is actually 1
millimeter.

5.8 Compressed File Sections

Within a PRC File, all sections, except header sections, are individually compressed with a Flate method. The
Flate method is based on the public-domain zlib/deflate compression method, which is a variable-length
Lempel-Ziv adaptive compression method cascaded with adaptive Huffman coding. It is fully defined in
Internet RFCs 1950, ZLIB Compressed Data Format Specification, and 1951, DEFLATE Compressed Data
Format Specification (see the Bibliography).

This form of compression is considered to be "lossless". It occurs systematically whatever the actual content
of the PRC file, and even if it contains compressed geometry or tessellation.

5.9 Compressed Geometry
Compression of geometry results in very small files. This compression is "lossy” in that the geometry is an

approximation to geometry to within a specified tolerance (typically 0,001lmm). See 7.9.20 and 7.9.19 for
entities representing compressed geometry. Note that the methodology to determine an approximation of the

© IS0 2008 — All rights reserved 17

original geometry (e.g. analytic recognition) is not part of PRC standard. Only the resulting entities and the
method to store them are described in PRC.

5.10Compressed Tessellation

Compression of tessellation data results in very small files. This compression is "lossy” in that the tessellation
data is an approximation to tessellation data to within a specified tolerance (typically 0,01mm). See 7.8.9 for
an entity representing compressed tessellation. Tessellation data is not necessarily generated from or
considered as an “approximation“ of geometry; it is an alternative way to convey data. Note that the
methodology to determine an approximation of the original tessellation (e.g. polygon decimation) is not part of
PRC standard. Only the resulting entities and the method to store them are described in PRC.

6 PRC File Contents
6.1 FileHeader

6.1.1 General

The Header contains the file version for the authoring version (PRC Format Specification) that the PRC File
Writer is based on and the minimal version for read (PRC Format Specification) that a conforming PRC File
Reader is based on that write/read the data outside of the individual FileStructures in the PRC File.

Each FileStructure has a identifier which is unique among all of the FileStructures within this PRC File.

Each application has a unique identifier which enables the interpretation of UserData. This identifier must be
set to 0000 or to a valid application identifier. 0000 indicates that the authoring application is not “registered“
but (as discussed above) there can still be user data from another application in the file. Valid identifiers are
distributed by Adobe Systems, Inc. upon request. <<Editor’s note: this is for determination by 1SO.>>

A valid PRC File must contain at least one FileStructure.

Required or Option Data Type Data Description
Required 3bytes:P,R, C “PRC”

Required UncompressedUnsignedinteger Minimal version for read
Required UncompressedUnsignedinteger Authoring version

Unique ID for file structure; The
first and last sections of PRC File
(before and after the

Required FileStructureUncompressedUniqueld FileStructures themselves) are a
kind of special file structure which
bear an ID as well.

Required FileStructureUncompressedUniqueld | Unique ID for application

Required UncompressedUnsignedinteger Eitljember of FileStructures in PRC

Required ArrayOf [FileStructureDescription] Information describing each

FileStructure in PRC File; the

18 © IS0 2008 — Al rights reserved

ordering of this array reflects the
ordering of the FileStructure
within the file.

Start offset of ModelFileData

Required UncompressedUnsignedinteger section from beginning of PRC
File (in bytes)
End offset of ModelFileData

Required UncompressedUnsignedinteger section from beginning of PRC
File (in bytes)

. . Number of uncompressed files

Required UncompressedUnsignedinteger . .

that are saved in the PRC File
. . Array of uncompressed files
Optional ArrayOf [UncompressedFiles]

stored in the PRC File

6.1.2 FileStructureDescription

The FileStructureDescription contains information defining a particular FileStructure within the PRC File:

e Each FileStructure has an identifier which is unique among the FileStructures within a PRC File.

e The starting offset (in bytes from the beginning of the PRC File) of each of the following sections
within a FileStructure: header, globals, tree, tessellation, geometry, and extra geometry.

Required UncompressedUniqueld Unique id for this FileStructure
Required UncompressedUnsignedinteger | Reserved; must be 0
Number of sections in this
Required UncompressedUnsignedinteger ;:fsatlr:c;;r: (tsesf:erI:teiz?:r’
geometry, and extra geometry)
Required ArrayOf :;i:icozft‘srztrf?hk;y;zsg)i : riiiagc:f

[UncompressedUnsignedinteger]

PRC File

6.1.3 UncompressedFiles

Directly embeds private data inside a PRC File. This may be referenced by objects in the same PRC File
using the index of the uncompressed file within this array, and interpreted accordingly. Up to this version of
the PRC File Format Specification, only picture objects make reference to these files (see 7.5.5)

Required

UncompressedUnsignedinteger

Number of uncompressed files

© ISO 2008 — Al rights reserved

19

Arbitrary data to embed within

Required ArrayOf [UncompressedBlock] a PRC File

6.2 FileStructure

6.2.1 General

A file structure is comprised of one FileStructureHeader section, a Schema section and the following data
sections:

e Globals: referenced file structures and colors, line styles, and coordinate systems for each tree
entity of the file structure.

e Tree: a description of the tree of items (product occurrences, part definitions, representation items,
and markup).

e Tessellation: all tessellated (triangulated) data in the leaf entities of the tree (representation items
and markups).

e Geometry: all exact geometry and topology data of the leaf entities of the tree (representation items).

e Extra geometry: geometry summary data, which allow for partial loading of the file structure without
loading the entire geometry.

Required or | Data Type Data Description
Option

Required FileStructureHeader

Define the schema for the
entities in this FileStructure
. . which have changed
Required FileStructureSchema
between the
minimal_version_to_read

and the authoring_version

Referenced FileStructures and

. . colors, line styles, and

Required PRC_TYPE_ASM_FileStructureGlobals)
coordinate systems for each

tree entity of the file structure

a description of the tree of

items (product occurrences,

Required PRC_TYPE_ASM_FileStructureTree (p_ il)
part definitions, representation

items, and markup)

All tessellated (triangulated)

. . X data in the leaf entities of the

Required PRC_TYPE_ASM_FileStructureTessellation o
tree (representation items and

markups).

20 © IS0 2008 — Al rights reserved

All exact geometry and
topology data of the leaf

try

Required PRC_TYPE_ASM_FileStructureGeometry .
entities of the tree
(representation items)
Geometry summary data, which
. PRC_TYPE_ASM_FileStructureExtraGeome | allow for partial loading of the
Required

file structure without loading
the entire geometry

6.2.2 FileStructureHeader

A FileStructureHeader defines various properties of a FileStructure:

* The minimal file version of the a conforming PRC File Reader;

* The authoring version of a conforming PRC File Writer that wrote this FileStucture;

o The unique ID of this FileStructure; this ID must be the same as the identifier in the PRC File
Header section;

e The unique ID of the conforming PRC File Writer;

e A variable number of private uncompressed data files.

Required or Option Data Type Data Description
Required 3 bytes (P, R, C) “PRC”

Required UncompressedUnsignedinteger Minimal version to read
Required UncompressedUnsignedingeger Authoring version

Required FileStructureUncompressedUniqueld | Unique ID of this FileStructure
Required FileStructureUncompressedUniqueld | Unique ID for application
Required UncompressedUnsignedinteger Number of uncompressed files
Required ArrayOf [UncompressedFile] Array of uncompressed data

6.2.3 FileStructureSchema

Each FileStructure in a PRC File may represent a different version of the PRC Format Specification written by
a different application (PRC File Writer). Each FileStructure must define the schema for changes (new entities
and new data fields to existing entities) for the entities that are stored within it. See 6.3 for a description of the
facilities for describing a schema.

© ISO 2008 — Al rights reserved

21

6.3 PRC Schema

6.3.1 General

A schema describes changes between versions of PRC File Format Specification. See 6 for a basic
description of versioning in PRC. This mechanism allows information to be added for a given entity type
(schema_type) and still be readable by previous versions of the software.

Only those types which have changed between the minimal_version_for_read and authoring_version
require a schema description, and only if they are present in the file.

Required or Option Data Type Data Description

Number of entity types
that have changed
Required Unsignedinteger between minimal version
for read and authoring
version

. . L Schema definition of each
Required ArrayOf[Entity_Schema_definition]
type that has changed

6.3.2 Entity_schema_definition
This provides the schema definition for an entity type in a PRC File. The entity is described by an array of
schema tokens which in turn should be viewed as a list of versioned blocks which describe versions of the
entity. See 9.3.20 for a description.

Entity_type represents the entity type, such as 7.10.14, that is being described by the array of schema tokens.

Required or Option Data Type Data Description
Required Unsignedinteger Entity_type
.) Number of tokens
Required Unsignedinteger .] .
describing this entity type
. . Array of schema tokens
Required ArrayOf[Unsignedinteger]

describing this entity type

7 Base Entities

7.1 General

BASE ENTITIES represent high level concepts such as curves, surfaces, topology, parts, assemblies,
markups, or tessellation data which are stored in a PRC File. Entities are defined by a type name used for

22 © 1SO 2008 — All rights reserved

descriptive purposes, a type value which is stored in the PRC File to indicate that the data defining the entity
follows, and an indication if the entity is referenceable. An entity is referenceable if it may be referenced using
a unique identifier.

7.2 Abstract Root Types

7.2.1 Entity Types

Type Name Type Value Referenceable
PRC_TYPE_ROOT 0 N/A
PRC_TYPE_ROOT_PRCBase PRT_TYPE_ROOT +1 N/A
PRC_TYPE_ROOT_PRCBaseWithGraphics | PRT_TYPE_ROOT + 2 N/A
PRC_TYPE_ROOT_PRCBaseNoReference | PRT_TYPE_ROOT + 3 N/A

7.2.2 PRC_TYPE_ROOT

An entity of this type in a PRC File is to be interpreted as a NULL pointer or entity depending on the specific
circumstances.

7.2.3 PRC_TYPE_ROOT PRCBase

7.2.3.1 General

This is the abstract root type for any PRC entity that can be referenced.

7.23.2 ContentPRCBase

This represents common data for all PRC base entities. All PRC base entities have attribute and name
information. However, only entities which are eligible to be referenced will have a PRC FileStructure unique
identifier and a persistent and non-persistent identifier from the originating CAD file.

Required or Option

Data Type

Data Description

Required

AttributeData

Attribute data associated with the entity

Required

Name

Entity Name

OPTION: if type of entity | Unsignedinteger | non-persistent CAD identifier from originating CAD
is elegible for reference file

OPTION: if type of entity | Unsignedinteger | persistent CAD identifier from originating CAD file
is elegible for reference

OPTION: if type of entity | Unsignedinteger | PRC FileStructure unique identifier
is elegible for reference

© IS0 2008 — All rights reserved 23

7.2.3.3 AttributeData

A base entity may have zero or more associated attributes.

Required or Option Data Type Data Description
Required Unsignedinteger Number of attributes
. ArrayOf .
Required [PRC_ TYPE_MISC_Attribute] An array of attribues

7.2.3.4 Name

PRC employs the concept of a current_name which retains the name of the last entity being read or written. If
the name of the subsequent entity being read or written is the same as the current name, no name will be in
the file. Otherwise, a name for the entity is read from the file and the current name is updated to this new
name. This is done to optimize on space within the file.

Required or Option Data Type Data Description

TRUE implies the name of this
entity is the same as the current

Required Boolean name; FALSE implies that a new
name is in the file
Name of the entity if it is not the
OPTION: FALSE String same as the current name; this

name will become the current
name

7.2.4 PRC_TYPE_ROOT_PRCBaseWithGraphics

7.24.1 General
Information for any base PRC entity which can be referenced and which contains graphics.

PRC employs the concept of current graphics content which retains the graphics content of the last entity
being read or written. If the graphics content of the subsequent entity being read or written is the same as that
the current graphics content, no graphics content will be in the file. Otherwise, a graphics content for the
entity is read from the file and the current graphics content is updated to this new graphics content. This is
done to optimize on space within the file.

24 © 1SO 2008 — All rights reserved

Required or | Data Type Data Description

Option

Required ContentPRCBase Base information associated
with the entity

Required Boolean SameGraphicsAsCurrent

OPTION:FALSE

GraphicsContent

Graphical data associated

with the entity

7.2.4.2 GraphicsContent

Layer_index represents the layer the entity lies on. It should have a value less than 65535.

index_of_line_style represents the index into the array of styles, which is stored in
FileStructurelnternalGlobalData (See section 7.3.5.2 below). The array of styles is a set of
PRC_TYPE_GRAPH_Style entities (See 7.5.3) and should have a value less than 65535. (See section
7.5.3)

behaviour_bit_field is an unsigned short integer (2 bytes). This bit field defines the behavior of a given
entity, given its position in the tree of entities. The inheritance works as follows:
If the SonHerit flag is set, the value corresponds to the youngest son.
If the SonHerit flag is not set but the FatherHerit flag is set, the value corresponds to the oldest
father.
If no flag is set, the value is set to the son, if any exists.

Potential values and meanings of this bit field are:

0 PRC_GRAPHICS_Show 0x0001
The entity is shown.

o PRC_GRAPHICS_SonHeritShow 0x0002
Shown entity son inheritance.

0 PRC_GRAPHICS_FatherHeritShow 0x0004
Shown entity father inheritance.

0 PRC_GRAPHICS_SonHeritColor 0x0008
Color/material son inheritance.

0 PRC_GRAPHICS_FatherHeritColor 0x0010
Color/material father inheritance.

0 PRC_GRAPHICS_SonHeritLayer 0x0020
Layer son inheritance.

0 PRC_GRAPHICS_FatherHeritLayer 0x0040
Layer father inheritance.

0 PRC_GRAPHICS_SonHeritTransparency 0x0080
Transparency son inheritance.

0 PRC_GRAPHICS_FatherHeritTransparency 0x0100
Transparency father inheritance.

0 PRC_GRAPHICS_SonHeritLinePattern 0x0200
Line pattern son inheritance.

o PRC_GRAPHICS_FatherHeritLinePattern 0x0400
Line pattern father inheritance.

0 PRC_GRAPHICS_SonHeritLineWidth 0x0800
Line width son inheritance.

o PRC_GRAPHICS_FatherHeritLineWidth 0x1000

© IS0 2008 — All rights reserved 25

http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/group___p_r_c___t_y_p_e___g_r_a_p_h.html#g5df3226f805d87b647ccfcc0fae9afa4�

Line width father inheritance.

0 PRC_GRAPHICS_Removed 0x2000

The entity has been removed and no longer appears in the tree.

Required or Optional Data Type Data Description
Required UnsignedIinteger Layer_index+1
Required Unsignedinteger Index_of_line_style+1
Required Unsigned Character Behavior_bit_field
Required Unsigned Character Behavior_bit_field >> 8

7.2.5 PRC_TYPE_ROOT_PRCBaseNoReference

This is the abstract root type for any PRC entity that can not be referenced.

This type is useful for schema descriptions. For example, EPRCSchema_Father_Type can be used to define
a new type which has one of three different ancestor types. It can be a son of either

PRC_TYPE_RootPRCBase, PRC_TYPE_RootPRCBaseWithGraphics , or

PRC_TYPE_RootPRCBaseNoReference.

¢ PRC_TYPE_RootPRCBase: ancestor type would indicate that the new type is a referencable type

e PRC_TYPE_RootPRCBaseNoReference: ancestor type would indicate that the new type is not

referencable.

e PRC_TYPE_RootPRCBaseWithGraphics: ancestor type would indicate that the new type is a

referencable type which bear graphics

Examples :

PRC_TYPE_GRAPH_LinePattern has PRC_TYPE_RootPRCBase in its ancestor chain

PRC_TYPE_ASM_FileStructure has PRC_TYPE_ROOT_PRCBaseNoReference in its ancestor chain

PRC_TYPE_RI_Curve has PRC_TYPE_RootPRCBaseWithGraphics in its ancestors chain

7.3 Structure and Assembly

7.3.1 Entity Types

Type Name

Type Value

Referenceable

PRC_TYPE_ASM

PRC_TYPE_ROOT + 300

PRC_TYPE_ASM_ModelFile

PRC_TYPE_ASM + 1

PRC_TYPE_ASM_FileStructure

PRC_TYPE_ASM + 2

PRC_TYPE_ASM_FileStructureGlobals

PRC_TYPE_ASM + 3

PRC_TYPE_ASM_FileStructureTree

PRC_TYPE_ASM + 4

PRC_TYPE_ASM_FileStructureTessellation

PRC_TYPE_ASM + 5

26

© ISO 2008 — All rights reserved

PRC_TYPE_ASM_FileStructureGeometry PRC_TYPE_ASM + 6

PRC_TYPE_ASM_FileStructureExtraGeometry | PRC_TYPE_ASM + 7

PRC_TYPE_ASM_ProductOccurrence PRC_TYPE_ASM + 8 yes
PRC_TYPE_ASM_PartDefinition PRC_TYPE_ASM + 9 yes
PRC_TYPE_ASM_ModelFile PRC_TYPE_ASM + 10

7.3.2 PRC_TYPE_ASM

This is the abstract type for the top level PRC structure.
7.3.3 PRC_TYPE_ASM_ModelFile

7.3.3.1 General

A model file (PRC_TYPE_ASM_ModelFile) is typically created by importing data from a CAD file. There is
only a single PRC_TYPE_ASM_ModelFile entity in a PRC File. The model file contains product occurrences,
which are split into different FileStructures.

units_from_CAD_file is to be interpreted as discussed in section Units
number_of_product_occurrences is the number of root product occurrences in the model file.
product_occurrences represents the root product occurrences in the model file.

file_structure_index_in_model_file indicates the index at which the FileStructure should be stored in
memory within a ModelFile (PRC_TYPE_ASM_ModelFile). A conforming PRC File Reader should
reconstitute / maintain FileStructures in memory in the order that they appear in the ModelFile, regardless of
the order in the physical PRC file. In the physical PRC file, the order of file structures must be in accordance
with their dependancies with other file structures as follows: if a given file structure A depends on another file
structure B (in the sense that A references elements of B), B must appear first in the PRC physical file. This
restriction does not exist for the memory storage of the file structures.

number_of_file_structures is obtained directly from the header of the PRC File.

Required | Data Type Data Description

or

Option

Required Unsignedinteger PRC_TYPE_ASM_ModelFile

Required ContentPRCBase Base information associcated with entities

Required Boolean Units_from_CAD_file is TRUE if the units
come from a CAD system and are thus
suitable for measurement; else FALSE

Option: Double Units in multiple of mm

© IS0 2008 — All rights reserved 27

TRUE

Required Unsignedinteger number_of _root_product_occurrences

Required | ArrayOf[ProductOccurrenceReference] | References to the root product occurrences
in the model file

Required ArrayOf [Unsignedinteger] file_structure_index_in_model_Tfile:
Indicies to to FileStructure within the model
file; the size of the array is obtained directly
from the header of the PRC Fie

Required | UserData User defined data

7.3.3.2 ProductOccurrenceReference

This defines the unique identifier of the PRC_TYPE_ASM_FileStructure and the index of the root product
occurence in the array of product occurrences within the PRC_TYPE_ASM_FileStructureTree, as contained
within the PRC_TYPE_ASM_FileStructure.

Product_occurrence_is_active is reserved for future use, and is currently unused. Its default value should
be TRUE. Its use will be to control storing different versions/configurations of a product in the same PRC File.
Currently, only one can be active at a time but you can switch from one to the other.

Required or Option Data Type Data Description

Required CompressedUniqueld Unique identifier of the
FileStructure that contains this
root product occurrence.

Required Unsignedinteger Index of the root product
occurrence within the
FileStructure

Required Boolean TRUE if the product occurrence
is active; else FALSE

7.3.4 PRC_TYPE_ASM_FileStructure
This type gathers internal data of a file structure as described in PRC_TYPE_ASM_FileStructureTree

The parameter Next_available_index is used when re-opening the FileStructure, to be able to safely add
entities with a unique id without overlap to pre-existing entities.

The parameter Index_product_occurrence is used to denote which product occurrence inside the
FileStructure is the unique root.

Required or Option Data Type Data Description

28 © IS0 2008 — Al rights reserved

Required

Unsignedinteger

PRC_TYPE_ASM_FileStructure

Base information associated with

Required ContentPRCBase s
entities
Required Unsignedinteger Next available index
Required Unsignedinteger Index of root product occurrence

7.3.5 PRC_TYPE_ASM_FileStructureGlobals

7.3.5.1 General

This type gathers global data of a file structure as described in Section 6.2.

Required or | Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_ASM_FileStructureGlobals

Required ContentPRCBase Base information associated with entities

Required Unsignedinteger Number of referenced FileStructures
Unique ids for FileStructures within the

Required ArrayOf [CompressedUniqueld] PRC File which are referenced by entities
in this FileStructure

Required FileStructurelnternalGlobalData

Required UserData User defined data

7.3.5.2 FileStructurelnternalGlobalData

7.35.2.1 General

This internal structure is used in PRC_TYPE_Asm_FileStructureGlobals.

Required or Option Data Type Data Description
Required Double Tessellation chord height
Required Double Tessellation angle (degrees)

© ISO 2008 — Al rights reserved

29

Required MarkupSerializationHelper See below
Required Unsignedinteger Number of colors
Required ArrayOf [RgbColor] Array of color definitions
Required Unsignedinteger Number of pictures
Required ArrayOf [PRC_TYPE_GRAPH_Picture] Array of pictures
. . Number of textures
Required Unsignedinteger definitions
. ArrayOf N
Required [PRC_TYPE_GRAPH_TextureDefinition] Array of texture definitions
Required Unsignedinteger Number of materials
Required ArrayOf [PRC_TYPE_GRAPH_Material] | Array of materials
Required Unsignedinteger Number of line patterns
. ArrayOf .
Required [PRC_TYPE_GRAPH_LinePattern] Array of line patterns
Required Unsignedinteger Number of styles
A f 1li
Required ArrayOf [PRC_TYPE_GRAPH_Style] st:/rlae‘g of category 1 line
Required Unsignedinteger Number of fill patterns
. ArrayOf .
R A f fill
equired [PRC_TYPE_GRAPH_FillPattern] rray of fill patterns
Required Unsignedinteger Numb.er of reference
coordinate systems
. ArrayOf Array of reference
Required . .
[PRC_TYPE_RI_CoordinateSystem] coordinate systems
7.35.2.2 MarkupSerializationHelper
7.35.2.21

This Global data is composed of font information for markup. The following example shows how the global
data is serialized for markup font information.

o default_font_family_name defines the case-sensitive default font family name used for

30

© ISO 2008 — All rights reserved

text if a given font family is not available on the computer. If this default font family itself is not
available on the computer, the font will be MyriadPro from Adobe Systems, Inc.

e font_keys_of_font represents several font keys sharing the same base font name.
Indices for font keys used in ContentMarkupTess are calculated from this array.
For example, if there are two font names representing 4 and 5 font keys respectively, index #7
would be represented by font_keys[1][3].

e attributes represents the font attributes, and is a combination of the values in the table below.

Required or Option Data Type Data Description
Required String default_font_family_name
Required Unsignedinteger Number of fonts

Required ArrayOf[FontKeysSameFont] Font_key_of_font[i]

7.3.5.2.2.2 FontKeySameFont

This type describes a list of usages of the same font (referred to by its name) with different metrics and
attributes.

Required or Option Data Type Data Description

Required String Font Name

Required Unsignedinteger Character Set

Required Unsignedinteger Number-of-font-keys

Required ListOf[UnsignedInteger, Font_keyli].Font-size + 1,
Character] Font-key[i].Attributes

The following table contains the possible values for the Character Set.

Value | Description

0 Roman
1 Japanese
2 Traditional Chinese

© IS0 2008 — All rights reserved 31

3 Korean

4 Arabic

5 Hebrew

6 Greek

7 Cyrillic

8 RightLeft

9 Devanagari

10 Gurmukhi

11 Guijarati

12 Oriya

13 Bengali

14 Tamil

15 Telugu

16 Kannada

17 Malayalam

18 Sinhalese

19 Burmese

20 Khmer

21 Thai

22 Laotian

23 Georgian

24 Armenian

25 Simplified Chinese

26 Tibetan

27 Mongolian

28 Geez

29 EastEuropeanRoman
32

© ISO 2008 — All rights reserved

30 Vietnamese

31 ExtendedArabic

attributes represents the font attributes, and is a combination of the following values.

Font attribute

value Description
2 Bold
4 Italic
8 Underlined
16 Strike-Out
32 Overlined
64 Stretch. In case the font to be 'usgd js pot the or'iginal font, this attribute value indicates that
the text must be stretched to fit within its bounding box<./TD>
128 Wire. This attribute value indicates that the original font is a wireframe font.

7.3.5.2.3 RgbColor

Color definition with 3 components.

Required or Option Data Type Data Description
Required Double Red

Required Double Green

Required Double Blue

7.3.6 PRC_TYPE_ASM_FileStructureTree
Each FileStructure within a PRC file has a FileStructureTree which defines

e the number of parts and part data

e the number of product occurrences and product occurence data
within this FileStructure.
By convention, the data within PRC Files are ordered so that data is defined before it is referenced. In the
case of a FileStructureTree, part data is defined before product occurrence data which may refer to it, but
within the array of part data, the order of the parts is immaterial. This is not the case for product occurrence

data.

Product occurrence data represent an assembly, with a single product occurrence being the root. Each
product occurrence (except the root) may be referenced by only one product occurrence. However, each

© IS0 2008 — Al rights reserved 33

product occurrence may refer to multiple product occurrences. The array of product occurence data should be
ordered so that any product occurrence is defined before the product occurrence referring to it.

The FileStructurelnternalData defines the index of the root product occurrence and the next available index
available to use when assigning unique index (identifiers) to referenceable entities within the FileStructure.

Required or Option

Data Type

Data Description

Required UnsignedInteger PRC_TYPE_ASM_FileStructureTree
Required ContentPRCBase Base information associated with
entities

Required Unsignedinteger Number of part definitions

Required ArrayOf An array of part definitions
[PRC_TYPE_ASM_PartDefinition]

Required UnsignedInteger Number of product occurrences

Required ArrayOf An array of product occurrences
[PRC_TYPE_ASM_ProductOccurrence]

Required PRC_TYPE_ASM_FileStructure FileStructurelnternalData

Required UserData User defined data

7.3.7 PRC_TYPE_ASM_FileStructureTessellation

This type gathers tessellation data of a file structure as described in section 6.2.

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_ASM_FileStructureTesssellation
Required ContentPRCBase Base information associated with entities
Required Unsignedinteger Number_of_tessellations

Required ArrayOf[PRC_TYPE_TESS] Content of all tessellations

Required UserData User defined data

7.3.8 PRC_TYPE_ASM_FileStructureGeometry

7.3.8.1 General

This type gathers geometry data of a file structure as described in section 6.2.

34

© ISO 2008 — All rights reserved

Required or Option | Data Type Data Description

Required Unsignedinteger PRC_TYPE_ASM_FileStructureGeometry
Base inf i i ith

Required ContentPRCBase as.e.ln ormation associcated wit
entities

. . Topological context entities and their

Required FileStructureExactGeometry) .
associated brep bodies

Required UserData User defined data

7.3.8.2 FileStructureExactGeometry

The FileStructureExactGeometry section consists of an array of "topological contexts". Each "topological
context" contains an array of brep bodies contained within that topological context. Every geometrical and
topological entity within a FileStructure may only belong to a single topological context.

A pair of indices (topological context, brep body) uniquely identifies a brep body within the topolological
entities of a FileStructure.

Required or Option Data Type Data Description

Required Unsignedinteger Number of topological contexts

Required ArrayOf [TopologicalContext] Array of topological contexts
together with its associated
brep bodies

7.3.9 PRC_TYPE_ASM_FileStructureExtraGeometry

7.3.9.1 General

The extra geometry data is summary data pertaining to the geometry which can be used to enable partial
loading of the file structure without loading the entire geometry. This type gathers summary information of the
exact geometry section, by topological context.

Required or Option | Data Type Data Description

Required Unsignedinteger PRC_TYPE_ASM_FileStructureExtraGeometry
Required ContentPRCBase See Section ContentPRCBase

Required Unsignedinteger Number of extra geometry contexts
Required ArrayOf [ExtraGeometry]

© IS0 2008 — Al rights reserved 35

Required UserData See Section 5.5 for details

7.3.9.1.1 ExtraGeometry

This is the summary of a topological context.

Required GeometrySummary Summary Data

Required ContextGraphics Graphics Context Data

7.3.9.1.2 GeometrySummary
7.39.1.21 General
This describes the summary list of the bodies of the topological context.

The number_of_bodies must be the same as the number of bodies in the context.

Required Unsignedinteger Number_of_bodies
Required ArrayOf [BodyInformation] Graphics information specific to
each body

7.39.1.2.2 BodyInformation
This describes the summary information of a body.

The body_serial_type must be the type of the body that is in the topological context or it must be set to
PRC_ROOT_TYPE if the body has no geometry. See the section 7.9.14 for details.

Required Unsignedinteger body_serial_type

Optional Double tolerance which
corresponds to the

(lf body_serial_type is one of the fO”OWing: compression tolerance

for the corresponding

PRC_TYPE_TOPO_BrepDataCompress entity

PRC_TYPE_TOPO_SingleWireBodyCompress

PRC_TYPE_TESS_3D_Compress)

7.3.9.1.3 ContextGraphics

7.3.9.1.3.1 General

This describes the summary list of the graphical attributes of entities within the topological context.

36 © IS0 2008 — Al rights reserved

The following loop shows how to traverse a topological context to gather Graphiclnformation. A
Graphicinformation is gathered as soon as there is a graphic content provided for a particular entity :

For (i=0; i<number_of_body; i++) {
If (body[i] is PRC_TYPE_TOPO_BrepData) {
For (j=0; j<body[i].number_of_connex; j++) {
For (k=0; k<body[i].connex[j].number_of_shell; k++) {
For (1=0; I<body][i].connex[j].shell[k].number_of face; k++) {

Add_to_output(body[i].connex]j].shell[k].face][l])

Number_of_treat_type corresponds to the number of entity types for which Graphicsinformation is stored
(currently, only PRC_TYPE_TOPO_Face is supported, so if there are graphics on some faces,
Number_of_treat_typeis 1, else itis 0).

The current graphics as explained in 7.5 is reset prior to writing/reading the context graphics.

Required Unsignedinteger Number_of_treat_type

Required ArrayOf[GraphicsInformation] Graphic information for each type

7.3.9.1.3.2 Graphicsinformation
This describes the particular graphics for one particular type of the topological context.

The number_of_element represents the number of elements collected during a recursive search on the
Context data (including duplicated elements) as shown in 7.5.

Required Unsignedinteger Element type

Required Unsignedinteger Number of elements

Required ArrayOf[Elementinformation] Graphics Information for each
Element

7.3.9.1.3.3 Elementinformation

This describes the particular graphics for one particular element of the topological context.

© IS0 2008 — All rights reserved 37

Required Boolean TRUE if element[i] has graphics

Optional ArrayOf[ElementGraphicsBehavior] | If element[i] has Graphics

7.3.9.1.34 ElementGraphicsBehavior

This describes graphics for one particular element of the topological context.

layer_index represents the index in the array of layers stored in FileStructurelnternalGlobalData.
Index_of_line_style represents the index in the array of styles stored in FileStructurelnternalGlobalData.

behaviour_bit_field is an unsigned short integer (2 bytes) . See Section ContextGraphics for details.

Required Boolean TRUE => use -current graphic
context
Optional (if Boolean = FALSE) Unsignedinteger layer_index + 1
Unsignedinteger Index_of_line_style + 1
UnsignedCharacter Behavior_bit_field
UnsignedCharacter Behavior_bit_field >> 8

7.3.10 PRC_TYPE_ASM_ProductOccurrence

7.3.10.1 General

A product occurrence defines an assembly tree. In the case of a single part, the product occurrence points
directly to a part definition (PRC_TYPE_ASM_PartDefinition). In the case of a more complex assembly, a
product occurrence is comprised of a list of product occurences.

A product occurrence is comprised of the following data:

Part definition: A pointer to the corresponding part definition. It can be null.

Product prototype: A pointer to the corresponding product occurrence prototype. It can be null.
External data: A pointer to the corresponding external product occurrence. It can be null.
Sons: An array of pointers to the son product occurrences.

The product prototype is the product occurrence of a subassembly or part to be used in the parent assembly.
This prototype acts as a template for a given product occurrence, and lets you link to information inside the
subpart or assembly, such as geometry. When building assemblies from subassemblies, the tree of sons of
the product occurrence is duplicated from the prototype description. For external data, the tree is only
described inside the external data product occurrence. (refer to Figure 1 in Section 5.1)

When the assembly is heterogeneous (originating from different CAD systems), the link is specified through
the external data rather than the prototype.

A product occurrence has at most one father.

Product behavior represents the various flags for the product. In this version of PRC, only
PRC_PRODUCT_BEHAVIOUR_SUPPRESSED == 0x0001 is used. The other flags should be set to 0.

38 © IS0 2008 — Al rights reserved

Location represents the transformation between the product occurrence and its father.

Entity_reference is the referenced entities with possible modifiers towards their nominal definition, which may
include location, color, and visibility.

Markups represents the markups of this product occurrence (as opposed to part definition markups); these
are grouped into annotations.

Views represents the views which can contain annotations or specific display parameters.

Entity_filter is a specific filter applied when loading data from product prototypes denoting sub-assemblies.

Display_filters represents the filters to use for display. Several filters can be specified, but only one can be

active (see 7.3.12).

Scene_display_parameters is reserved for future use.

Required or
Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_ASM_ProductOccurrence

Required PRCBaseWithGraphics

Required ReferencesOfProductOcurrence

Required Character Behavior

Required Productinformation

Required Bit TRUE if there is a transformation; else
FALSE

OPTION:TRUE Transformation Location

Required Unsignedinteger Number of references

Required ArrayOf [PRC_TYPE_MISC_EntityReference] Array of entity references

Required MarkupData Markups for this product occurrence

Required Unsignedinteger Number of views

Required ArrayOf [PRC_TYPE_MKP_View] Array of view data

Required Bit TRUE if product occurrence has entity
filter; else FALSE

OPTION: TRUE | PRC_TYPE_ASM_Filter

Required Unsignedinteger Number of display filters

Required ArrayOf [PRC_TYPE_ASM_Filter] Array of display filters

Required Unsignedinteger Number of scene display parameters

© ISO 2008 — Al rights reserved

39

Required ArrayOf Array of scene display parameters
[PRC_TYPE_GRAPH_SceneDisplayParameter]

Required UserData User defined data

7.3.10.2 ReferencesOfProductOcurrence
7.3.10.2.1 General

For a given file structure, the product occurrences should be ordered based on the following criteria:
e A product prototype in the same file structure should be stored before any occurrences that use it.
e External data in the same file structure should be stored before any occurrences that use it.
e A son occurrence should be stored before its father.

e A part definition can be referenced several times in the same file structure.
(Refer to Figure 1 in Section 5.1.)
index_part represents the index of the part definition in the array of part definitions of the same FileStructure.
index_prototype represents the index of the product prototype in the FileStructure product occurrences
array.
prototype_in_same_file_structure indicates whether the prototype is in the same FileStructure.
index_external_data represents the index of the external data.

external_data_in_same_file_structure indicates whether the external data is in the same FileStructure.

index_son_occurrence, which is mandatory in the same file structure, represents the index of the son
product occurrence.

Required or Option | Data Type Data Description
Required Unsignedinteger Index_part + 1
Required Unsignedinteger Index_prototype + 1
Option: SaveFileldentifier Save

prototype_in_same_file_structure
(index_prototype !=-1)

Required Unsignedinteger Index_external_data + 1

Option: SaveFileldentifier Save
external_data_in_same_file_structure

(index_external_data != -

40 © IS0 2008 — Al rights reserved

1)

Required

Unsignedinteger

Number_of_son_product_occurrences

Required

ArrayOf[Unsignedinteger]

Array of index_son_occurrence

7.3.10.2.2 SaveFileldentifier

This saves the identifier of the FileStructure that the prototype or external data if it is different from the
FileStructure that the product occurrence lies in.

Required or Option Data Type Data Description
Required Boolean TRUE if the entity exists in
the same FileStructure;
Option: CompressedUniqueld Save the identifier of the
FileStructure that the entity
FALSE liesin

7.3.10.3 Productinformation

7.3.10.3.1 General

This is used to save general information associated with a product occurrence.

product information flags is described in PRCProductFlag.

product_load_status is described in EPRCProductLoadStatus.

unit_from_CAD _file indicates whether the unit is read from the native CAD file.

unit represents the units in mm.

Required or Option | Data Type Data Description

Required Boolean Unit_from_CAD_file

Required Double Units

Required Character product_information_flags
Required Integer product_load_status

7.3.10.3.2 PRCProductFlag

These flags represent characteristics of product occurrences.

© 1SO 2008 — All rights reserved

41

A product occurrence can be:

Default: The product occurrence is the default container, configuration, or view. This means that it is
loaded by default in the originating CAD system.

Internal: when used as a prototype of another product occurrence, this product occurrence does not
come from a different physical file. Hence it should belong to the same file structure.

Container: The product occurrence acts as a repository of son occurrences that do not necessarily
have relationships between them. This is useful for situations where a single CAD file can correspond
to a whole database of parts and assemblies.

Configuration: This is a specific arrangement of a product with respect to its whole hierarchy. Some
parts may differ or are in a different position. For example, consider the case of an automobile where
the steering wheel may be either on the left or right side.

View: A product occurrence which is a view refers to another product occurrence (its prototype) to
denote a particular setting of visibilities and position within the same hierarchy.

If none of these flags is specified, a product occurrence is referred to as regular. If the product occurrence has
no father, it is similar to a configuration. A product occurrence with no father leads to a different FileStructure,
unless it is internal, meaning that it represents a part, subassembly, or assembly hierarchy inside the same
FileStructure.

Value

Type Name

0x0000 PRC_PRODUCT_FLAG_REGULAR

0x0001 PRC_PRODUCT_FLAG_DEFAULT

0x0002 PRC_PRODUCT_FLAG_INTERNAL

0x0004 PRC_PRODUCT_FLAG_CONTAINER

0x0008 PRC_PRODUCT_FLAG_CONFIG

0x0010 PRC_PRODUCT_FLAG_VIEW

7.3.10.3.3 EPRCProductLoadStatus

This represents the status of a loading (i.e. file reading) operation.

Value Type Name Description
0 KEPRCProductLoadStatus_Error Unknown status
1 KEPRCProductLoadStatus_NotLoaded Loading error. For example, there is a
missing file
2 KEPRCProductLoadStatus_NotLoadable Not loadable. For example, something
prevents the file from being loaded.
3 KEPRCProductLoadStatus_Loaded The product was successfully loaded
42 © 1SO 2008 — All rights reserved

7.3.10.4 MarkupData

This is all the data that are related to Markup for a part or a product.

Required or | Data Type Data Description
Option

Required Unsignedinteger Number_of_linked_items
Required ArrayOf[PRC_TYPE_MISC_MarkupLinkedltem] | Array of linked items

Required Unsignedinteger Number_of_leaders

Required ArrayOf[PRC_TYPE_MKP_Leader] Array of leaders

Required Unsignedinteger Number_of_markups

Required ArrayOf[PRC_TYPE_MKP_Markup] Array of markups

Required Unsignedinteger Number_of_annotation_entities
Required ArrayOf[AnnotationEntities] Array of annotation entities

7.3.10.5 AnnotationEntities

An annotation entity can be a

e PRC_TYPE_MKP_Annotationltem

e PRC_TYPE_MKP_AnnotationSet

e PRC_TYPE_MKP_AnnotationReference

7.3.11 PRC_TYPE_ASM_PartDefinition

This represents a part definition.

A part consists of:

e A Bounding_box (reserved for future use);

e A collection of visible representation items containing geometrical data;

e Markups representing the markups of this part definition (as opposed to product occurrence markups);
these are grouped into annotations.

e Views represents the views which can contain annotations or specific display parameters.

Required or | Data Type Data Description
Option
Required Unsignedinteger PRC_TYPE_ASM_PartDefinition

© ISO 2008 — Al rights reserved

43

Required

PRC_TYPE_ROOT_PRCBaseWithGraphics

Required BoundingBox Currently not used

Required Unsignedinteger Number of representational items

Required ArrayOf [PRC_TYPE_RI] Array of representational items

Required MarkupData Markups for this part definition (see
PRC_TYPE_ASM_ProductOccurrence)

Required Unsignedinteger Number of views

Required ArrayOf [PRC_TYPE_MKP_View] Array of view data

Required UserData User defined data

7.3.12 PRC_TYPE_ASM_Filter

7.3.12.1 General

This entity specifies the filtering between parts and assemblies. A filter denotes the particular usage
of a subpart or product occurrence within a more complex one. It has the following purposes:

To represent only those items that are of interest in the complex assembly.

To configure the display accordingly.

Is_active: indicates whether this filter should correspond to the active layout when loading the file.
Required or Data Type Data Description
Option
Required Unsignedinteger PRC_TYPE_ASM_Filter
Required ContentPRCBase
Required ContentLayerFilterltems Layer filter
Required ContentEntityFilterltems Entity filter
Optional UserData See Section 8.6 for details

7.3.12.2 ContentLayerFilterltems

This saves information for filtering of entities by layer: only entities having certain layer specifications
will be retained by the filter.

b_is_inclusive indicates whether the elements inside the filter must be retained.

Required

Boolean

b_is_inclusive

Required

Unsignedinteger

Number of layers

44

© ISO 2008 — All rights reserved

Required ArrayOf[Unsignedinteger]

Layer index

7.3.12.3 ContentEntityFilterltems

This saves information for a filtering directly by entities: only entities referred to in the array will be

retained by the filter.

b_is_inclusive indicates whether the elements inside the filter must be retained.

Required Boolean b_is_inclusive
Required Unsignedinteger Number of entities
Required ArrayOf[PRC_TYPE_MISC_EntityReference] | Basic entity information

7.3.13 CompressedUniqueld

This saves information on unique id in compressed mode. Please refer to section 5.3.

Required Unsignedinteger Unique id[0]
Required Unsignedinteger Unique id[1]
Required Unsignedinteger Unique id[2]
Required Unsignedinteger Unique id[3]

7.4 Miscellaneous Data

7.4.1 Entity Types

This section gather types allowing for entities' referencing and positioning.

Type Name

Type Value

Referenceable

PRC_TYPE_MISC

PRC_TYPE_ROOT + 200

PRC_TYPE_MISC_Atiribute

PRC_TYPE_MISC + 1

PRC_TYPE_MISC_EntityReference

PRC_TYPE_ MISC + 2

PRC_TYPE_MISC_MarkupLinkeditem

PRC_TYPE_MISC + 3

PRC_TYPE_MISC_ReferenceOnPRCBase

PRC_TYPE_MISC + 4

PRC_TYPE_MISC_ReferenceOnTopology

PRC_TYPE_MISC +5

PRC_TYPE_MISC_CartesianTransformation

PRC_TYPE_MISC + 6

© 1SO 2008 — All rights reserved

45

PRC_TYPE_MISC_GeneralTransformation PRC_TYPE_MISC +7

7.4.2 PRC_TYPE_MISC

This is the abstract base type for PRC_TYPE_Misc entity types.

7.4.3 PRC_TYPE_MISC_ Attribute

7.4.3.1 General

This represents the storage of an attribute which has a single title and a variable number of key/value pairs.

For example an attribute might contain the coordinates of the center of gravity, which would be represented by
an attribute with title "Center of Gravity" and three key/value pairs (X =, 5), (Y =, 10) and (Z =, 20).

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_MISC_Attribute
Required AttributeEntry Attribute title
N f i Key/Val
Required Unsignedinteger u.mber of attribute Key/Value
pairs
Required ArrayOf [Attribute Key/Value] | Array of Key/Value pairs

7.4.3.2 AttributeEntry

This represents the storage of an attribute title represented by either a string or an integer containing a

predefined string.

The following are valid integer titles and their predefined character strings:

Integer Value Title
2 Title
3 Subject
4 Author
5 Keywords
6 Comments
7 Template
8 Last Saved By
9 Revision Number

46

© ISO 2008 — All rights reserved

10 Total Editing Time
11 Last Printed
12 Create Time/Date
13 Last saved Time/Date
14 Number of Pages
15 Number of Words
16 Number of Characters
17 Thumbnail
18 Name of Creating Application
19 Security
Attributes with a title beginning with either “ _PRC_RESERVED_ATTRIBUTE" or

“__PRC_EXTERNAL_ATTRIBUTE* can be used in the same way as UserData as discussed in section 5.5.
They are considered as conveying proprietary information which should not be interpreted by a conforming
PRC File Reader. This proprietary information is to be interpreted together with the application UUID of the
FileStructure the attribute belongs to, unless the first 4 key/value pairs of the attribute are:

e “ PRC_APPLICATION_UUID_1“integer,

e “ PRC_APPLICATION_UUID_2“integer,

e “ PRC_APPLICATION_UUID_3"integer,

e “ PRC_APPLICATION_UUID_4“integer

which indicates an alternate application UUID for the data to be interpreted.

Required or Option Data Type Data Description

Required Boolean TRUE fif tiltle of the attribute is an
integer else false

Option: TRUE Unsignedinteger Title is an integer

Option: FALSE String Title is a string

7.4.3.3 AttributeKey/Value
PRC allows for five different kinds of attribute data, represented by the following key:

e 0 represents an invalid type

© IS0 2008 — All rights reserved 47

e 1 represents a 32 bit integer
e 2 represents a floating point
e 3represents a 32 bit integer interpreted like time_t

e 4represents a UTF-8 character string

Required or Option Data Type Data Description

Required AttributeEntry Title of Key/Value Pair

Required Unsignedinteger Key determi‘nes what of 4 legal
types of attributes is to follow

Option: 1 Integer

Option: 2 Double

Option: 3 Integer Interpreted as time_t

Option: 4 String

7.4.4 PRC_TYPE_MISC_EntityReference

This general type can be used to reference any referenceable entity. The data stored in the reference may
include a line style, visibility, position or other property, and can be used to overwrite properties of the
referenced entity.

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_MISC_EntityReference
Required ContentEntityReference

Required UserData User defined data

7.4.5 PRC_TYPE_MISC_MarkupLinkedItem

7.45.1 General

This is used to establish a cross reference between markup and geometry. It contains a reference to the
geometry in a PRC File as well as a reference to the product occurrence to which the given instance of the
geometry belongs.

For example, consider the case of a distance dimension between a part contained in two product occurrences
(assemblies). The dimension will have two MarkupLinkedltems, the first pointing to the first product
occurrence and referencing the part, the second pointing to the second product occurrence and referencing
the part as well.

48 © IS0 2008 — Al rights reserved

Required or | Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_MISC_MarkupLinkedltem

Required ContentExtendedEntityReference | Reference to a remote product occurrence

Required Boolean If true, show/hide markup when showing/hiding
the referenced entity

Required Boolean If true, delete markup when deleting the
referenced entity

Required Boolean If true, show the leader when showing/hiding the
referenced entity

Required Boolean If true, delete the leader when deleting the
referenced entity

Required UserData User defined data

7.45.2 ContentExtendedEntityReference

Stores data to reference entities in remote product occurrences.

Required or | Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_MISC_MarkupLinkedltem
Required ContentEntityReference Reference to a remote product occurrence
Required ReferenceData Reference data for the entity

7.4.6 PRC_TYPE_MISC_ReferenceOnPRCBase

This describes a reference to a referenceable entity. Referenceable entity types are a subset of the PRC base
entities (see section 7.2.1 for the specific subset). Referenceable topological entities are handled separately
(see 7.4.7).

A reference to an entity consists of the UUID of the FileStructure the referenced entity lies in (if different from
the FileStructure this entity is in) and the index of the referenced entity within this FileStructure.

Required or | Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_MISC_ReferenceOnPRCBase

Required Unsignedinteger This is the type of the target entity
TRUE if this reference is to an entity in

Required Boolean same File Structure as this entity exists
in else FALSE

© ISO 2008 — Al rights reserved 49

Unique identifier of target
Option: FALSE CompressedUniquelD FileStructure if different from this
FileStructure; See Section 6.2 for details

Unique identifer within target File

R ired Unsi dint
equire nsignedinteger Structure

7.4.7 PRC_TYPE_MISC_ReferenceOnTopology

7.47.1 General

This describes a reference to a topological entity.

The following describe the data needed to locate the target entity:

e The type of topological entity being referenced must be one of those in ReferenceOnTopology
Entities

e If the target entity has a body in the Exact Geometry Section of the target FileStructure, additional
information is required to locate the target entity.

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_MISC_ReferenceOnTopology

Required Unsignedinteger Type of the topolocial entity being
referenced

Required Boolean TRUE if the target entity has a body in

the Exact Geometry Section of the
target FileStructure

OPTION: TRUE AdditionalTargetData Data defining the reference to the
target entity

7.4.7.2 AdditionalTargetData
This is used only within PRC_TYPE_MISC_ReferenceOnTopology.

The unique identifier of the target FileStructure is stored here if it is different from the FileStructure of the entity
currently being read or written.

To locate the target entity within the target FileStructure requires the following:
e The index of the topological context of the target entity.

e The index of the body within the topological context.

50 © IS0 2008 — Al rights reserved

e In addition, most topological entities need other indices within the body to identify themselves. The
number of additional indices and an array of index values indicate other index values that are needed
to uniquely identify the target entity. At present, the only topological entity which may be referenced is
a PRC_TYPE_TOPO_Face. For this, the requisite data would be:

o Number of additional indices is 1

0 The array would consist of one Unsigned Integer which would be the index of the face within

the body.

Required or Option

Data Type

Data Description

Required

Boolean

TRUE if the target entity is in the same
FileStructure as this entity

OPTION: FALSE

CompressedUniqueld

Unique identifier of the FileStructure
the target entity lies in

Required Unsignedinteger Index of the topological context of the
target entity within the FileStructure

Required Unsignedinteger Index of the body within the topological
context of the target entity

Required Unsignedinteger Number of additional indices needed to
locate the target entity

Required ArrayOf [Unsignedinteger] Array of additional indices

7.4.7.3 ReferenceOnTopology Entities

The only topological entity which may be referenced is a PRC_TYPE_TOPO_Face.

The follow topological entities may be referenced in future versions:

e PRC_TYPE_TOPO_MultipleVertex

e PRC_TYPE_TOPO_UniqueVertex

e PRC_TYPE_TOPO_WireEdge

e PRC_TYPE_TOPO_Edge

e PRC_TYPE_TOPO_Loop

e PRC_TYPE_TOPO_Shell

e PRC_TYPE_TOPO_Connex

© ISO 2008 — Al rights reserved

51

7.4.8 PRC_TYPE_MISC_CartesianTransformation

This represents a 3D transformation. Only the following flags are acceptable in defining a
PRC_TYPE_MISC_CartesianTransformation:

Value Type Name Data Description

0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x04 PRC_TRANSFORMATION_Mirror Mirror

0x08 PRC_TRANSFORMATION_Scale Uniform scale

0x10 PRC_TRANSFORMATION_NonUniformScale Non uniform scale

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_MISC_CartesianTransformation

Required Transformation Data defining the cartesian transformation
which is limited to the above table

7.4.9 PRC_TYPE_MISC_GeneralTransformation

This is a general 3D transformation consisting of the sixteen coordinates of a 4x4 matrix.

To use a 4x4 matrix to convert a 3D position of vector, one pre multiplies by the matrix, that is,

New_3D_PointOrVector = matrix * Old_3D_PointOrVector

This type exists from documented version 8137 and above. Hence every PRC writer with minimal version
lower than 8137 must write the schema of this type before writing such entity.

The coefficients are stored in the following order:

Matrix (First number is row, second number is column). For example, translation is represented by Tx=M[0][3],
Ty = M[1][3], Tz=M[2][3]

M[0][0]
M[1][0]
M[2][0]

M[3][0]

52

M[0][1]
M[1][1]
M[2][1]

M[3][1]

M[0][2] MIO][3]
M[1][2] MI1][3]
M[2][2] M[2][3]

M[3](2] MI3][3]

© ISO 2008 — All rights reserved

Storage order:
MI0][0]
MI1][0]
M[2][0]
M[3][0]
MIO][1]

M[1][1]

M[1][3]
M[2][3]

M[3][3]

Required or Option

Data Type

Data Description

Required

Unsignedinteger

PRC_TYPE_MISC_GeneralTransformation

Required

Double[16]

16 Coefficients of transformation

7.4.10 ContentEntityReference

7.4.10.1 General

This represents the data defining a reference to any referenceable entity.

The index_of_local_coordinate_system may be -1 indicating no local coordinate system is present.
Otherwise, the value given is the index into the array of reference coordinate systems defined in 7.3.5.2.

If the referenced entity does not exist, no futher information should be stored. If the reference does exist, data
describing the unique identifier of the referenced entity will be present in the PRC File.

Required or Option

Data Type

Data Description

Required PRCBaseWithGraphics

Required Unsignedinteger Index_of_local_coordinate_system
or -1 if none present

Required Boolean TRUE if the referenced entity
exists (i.e. is not NULL)

OPTION:TRUE ReferenceData Define the unique identifier of the

© ISO 2008 — Al rights reserved

53

reference entity.

7.4.10.2 ReferenceData

PRC_TYPE_MISC_ReferenceOnTopology should be used to reference an entity, whenever referencing a
referencable topological entity. Any other value is an error.

Required or Option Data Type

Data Description

OPTION: topology | PRC_TYPE_MISC_ReferenceOnTopology | Reference to a

reference referenceabe topological
entity

OPTION: non topology | PRC_TYPE_MISC_ReferenceOnPRCBase | Reference to a non-

reference topological entity

7.4.11 Transformation

7.4.11.1 General

The Transformation associated with an entity is defined as either 2D or 3D depending upon the dimension of
the entity containing the transformation.

Notes:

e A cartesian transformation that is used to represent a 3D cartesian transformation must be

orthogonal

and must not have homogeneous values.

Non-orthogonal or homogeneous

transformations are used only for the transformations used in textures.
e PRC_TYPE_MISC_GeneralTransformation is a transformation but only matrix coefficients are stored,
as described in section 7.4.9.

The Transformation is defined by its behavior which can be any combination (except as noted above) of

Value Type Name Data Description

0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x04 PRC_TRANSFORMATION_Mirror Mirror

0x08 PRC_TRANSFORMATION_Scale Uniform scale

0x10 PRC_TRANSFORMATION_NonUniformScale Non uniform scale

0x20 PRC_TRANSFORMATION_NonOrtho Non orthogonal

54 © 1SO 2008 — All rights reserved

0x40 PRC_TRANSFORMATION_Homogeneous Homogeneous

This parameter is stored at the beginning of the transformation and conditions the way in which the data are
read and written. The procedure is explained with the following pseudocode:

if (behavior & PRC_TRANSFORMATION_Translate)

read vector

if (behavior & PRC_TRANSFORMATION_NonOrtho)
Read vectors
else if (behavior & PRC_TRANSFORMATION_Rotate)

Read vectors

iT (behavior & PRC_TRANSFORMATION_NonUniformScale)
Read vector
else if (behavior & PRC_TRANSFORMATION_Scale)

Read double

if (behaviour & PRC_TRANSFORMATION_Homogenous)

Read vectors

For 3D geometry, a 4x4 matrix containing a translation, rotation, mirror, or scaling component can be inferred
from the data as follows:

e If translation, translate -> mat[0][3] mat[1][3] mat[2][3]
e If rotation,

0 rotate.xaxis -> mat[0][0] mat[1][0] mat[2][0]

0 rotate.yaxis -> mat[0][1] mat[1][1] mat[2][1]

o If no mirror, rotate.xaxis X rotate.yaxis -> mat[0][2] mat[1][2] mat[2][2] where X is the cross
product

o If mirror, rotate.yaxis X rotate.xaxis -> mat[0][2] mat[1][2] mat[2][2] where X is the cross
product

e If non-orthogonal,

0 nonortho.xaxis -> mat[0][0] mat[1][0] mat[2][0]

© IS0 2008 — Al rights reserved 55

o0 nonortho.yaxis -> mat[0][1] mat[1][1] mat[2][1]

o nonortho.zaxis -> mat[0][2] mat[1][2] mat[2][2]

If non-uniform scaling
o Apply non_uniform_scale.x to column mat[0][0] mat[1][0] mat[2][0]
o Apply non_uniform_scale.y to column mat[0][1] mat[1][1] mat[2][1]
o Apply non_uniform_scale.z to column mat[0][2] mat[1][2] mat[2][2]

If non-homogeneous,

o Homogeneous.x -> mat[3][0]
o Homogeneous.y -> mat[3][1]
o Homogeneous.z -> mat[3][2]

o Homogeneous.w -> mat[3][3]

Mirror is not applicable and must not be set in the case of non-orthognal rotation.If scale, apply scale
to the 3x3 submatrix mat[0][0] ... mat[3][3]

Similarly, for 2D geometry, a 3x3 matrix containing a translation, rotation or scaling component can be inferred
from the data as follows:

56

If translation, origin -> mat[0][2] mat[1][2]
If rotation,
0 xaxis -> mat[0][0] mat[1][0]
o yaxis -> mat[0][1] mat[1][1]
If non-orthogonal,
o nonortho.xaxis -> mat[0][0] mat[1][0]

0 nonortho.yaxis -> mat[0][1] mat[1][1]

Mirror is not applicable and must not be set in the case of non-orthogonal rotation.

If scale, apply scale to the 2x2 submatrix mat[0][0] ... mat[1][1].
If non-uniform scaling
o Apply non_uniform_scale.x to column mat[0][0] mat[1][0]
o Apply non_uniform_scale.y to column mat[0][1] mat[1][1]
If non-homogeneous,
o Homogeneous.x -> mat[2][0]

o0 Homogeneous.y -> mat[2][1]

© ISO 2008 — All rights reserved

o Homogeneous.w -> mat[2][2]

Required or Option Data Type Data Description
Behavior determines the type
of data used to define the
Required Character transformation; each bit of the

behavior determines if the
transformation has that data

See below for the contents of transformation entities. Vector3d is available for 3D transformation,

Vector2D is available for 2D transformation.

7.4.11.2 Translation

Required Vector3d or Vector2d

origin

7.4.11.3 Rotation

Required Vector3d or Vector2d

X axis; must be a unit vector

Required Vector3d or Vector2d

Y axis; must be a unit vector

7.4.11.4 NonOrtho

Required Vector3d or Vector2d X axis; must be a unit vector
Required Vector3d or Vector2d Y axis; must be a unit vector
Required (if 3D transformation) Vector3d Z axis; must be a unit vector

7.4.11.5 Scale

Required Double

Uniform scale

7.4.11.6 NonUniformScalePart

Required Vector3d or Vector2d

Scale factor for x, y, and z for 3D
transformation

© 1SO 2008 — All rights reserved

57

7.4.11.7 HomogeneousPart

Required Double X_homogeneous coordinate

Required Double Y_homogeneous_coordinate

Required (if 3D transformation) Double Z _homogeneous_coordinate

Required Double W _ homogeneous_coordinate
7.5 Graphics

7.5.1 Entity Types

Type Name

Type Value

Referenceable

PRC_TYPE_GRAPH

PRC_TYPE_ROOT + 700

PRC_TYPE_GRAPH_Style PRC_TYPE_GRAPH+1 |yes
PRC_TYPE_GRAPH_Material PRC_TYPE_GRAPH + 2 yes
PRC_TYPE_GRAPH_Picture PRC_TYPE_GRAPH + 3
PRC_TYPE_GRAPH_TextureApplication PRC_TYPE_GRAPH + 11 | yes
PRC_TYPE_GRAPH_TextureDefinition PRC_TYPE_GRAPH + 12 | yes
PRC_TYPE_GRAPH_TextureTransformation PRC_TYPE_GRAPH + 13
PRC_TYPE_GRAPH_LinePattern PRC_TYPE_GRAPH + 21 | yes
PRC_TYPE_GRAPH_FillPattern PRC_TYPE_GRAPH + 22
PRC_TYPE_GRAPH_DottingPattern PRC_TYPE_GRAPH + 23 | yes
PRC_TYPE_GRAPH_HatchingPattern PRC_TYPE_GRAPH + 24 | yes
PRC_TYPE_GRAPH_SolidPattern PRC_TYPE_GRAPH + 25 | yes
PRC_TYPE_GRAPH_VpicturePattern PRC_TYPE_GRAPH +26 | yes
PRC_TYPE_GRAPH_AmbientLight PRC_TYPE_GRAPH + 31 | yes
PRC_TYPE_GRAPH_PointLight PRC_TYPE_GRAPH + 32 | yes
PRC_TYPE_GRAPH_DirectionalLight PRC_TYPE_GRAPH + 33 | yes
PRC_TYPE_GRAPH_SpotLight PRC_TYPE_GRAPH + 34 | yes
PRC_TYPE_GRAPH_SceneDisplayParameters | PRC_TYPE_GRAPH + 35 | yes

58

© ISO 2008 — All rights reserved

PRC_TYPE_GRAPH_Camera PRC_TYPE_GRAPH + 36 | yes

7.5.2 PRC_TYPE_GRAPH

The abstract type for miscellaneous graphic elements not included in part geometry, topology, tesselation,
or markups. Includes line and fill styles and patterns, colors, textures, pictures, lighting scenes, and camera
angles. Graphic elements may be applied to other elements, such as part surfaces or markups.

7.5.3 PRC_TYPE_GRAPH_Style
This type contains all information used to describe the style of a line.

e line_width represents the line width in millimeters.
e is_vpicture indicates that the drawing style is a VPicture pattern instead of a line pattern. This style
is to be found in the pattern array instead of the line pattern array (see
FileStructurelnternalGlobalData Section 7.5.3.2).
e is_material indicates that the color style is a material instead of a plain color. This style is to be
found in the material array instead of the color array (see FileStructurelnternalGlobalData
Section 7.3.5.2).
e material_index is the index into the material array. (see FileStructurelnternalGlobalData Section
7.3.5.2).
e color_index is the index into the color array. (see FileStructurelnternalGlobalData Section 7.3.5.2).
e transparency values can range from O (transparent) to 255 (opaque).
e Rendering parameters holds values from PRC documented version 8137 and above.

Required or Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_GRAPH_Style

Required Double Line width

Required Boolean Is_vpicture

Required Unsignedinteger Line_pattern_index + 1 or Vpicture_index + 1
Required Boolean Is_material

Required Unsignedinteger Color_index + 1 or Material_index + 1
Required Boolean If true, transparency is defined

Optional Character transparency

Required Boolean If true, rendering parameters are defined
Optional Character Rendering parameter

Required Boolean Not currently used (set false)

Required Boolean Not currently used (set false)

Rendering parameter Value
special-culling strategy applies 0x0001

front culling applies (ignored if no special-culling strategy) 0x0002

© IS0 2008 — Al rights reserved 59

back culling applies (ignored if no special-culling strategy) 0x0004

no light applied to the corresponding object

0x0008

7.5.4 PRC_TYPE_GRAPH_Material

This type defines basic material appearance with colors and alphas.

e ambient_index: index into the RGB array (see Section 7.3.5.2)

o diffuse_index: index into the RGB array (see Section 7.3.5.2)

e emissive_index: index into the RGB array (see Section 7.3.5.2)

e specular_index: index into the RGB array (see Section 7.3.5.2)

Required or Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_GRAPH_Material
Required ContentPRCBase Basic information associated with the entity
Optional Unsignedinteger ambient_index + 1

Required Unsignedinteger diffuse_index + 1

Required Unsignedinteger emissive_index + 1

Required Unsignedinteger specular_index + 1

Required Double shininess

Required Double ambient_alpha (0.0 —> 1.0)
Required Double diffuse_alpha (0.0 —> 1.0)
Required Double emissive_alpha (0.0 —> 1.0)
Required Double specular_alpha (0.0 —> 1.0)

The definitions for shininess, anbient_alpha, diffuse_alpha, emissive_alpha , and specular_alpha are identical

to the definitions in OPENGL.
7.5.5 PRC_TYPE_GRAPH_Picture

7.55.1 General

This type is used to define pictures embedded in the file.

Require | Data Type
dor
Option

Data Description

Required | Unsignedinteger

PRC_TYPE_GRAPH_Picture

Required | ContentPRCBase

Basic information associated with the entity

Required | Integer

Format

60

© ISO 2008 — All rights reserved

7.55.2

Required | Unsignedinteger uncompressed_file_index + 1
Required | Unsignedinteger pixel width
Required | Unsignedinteger pixel height

Pixel_width and pixel_height are the size of the picture expressed in pixels. When Format is 0 or 1,
pixel width and pixel height fields are ignored. When Format is one of {2,3,4,5} the size of the picture
buffer when uncompressed must be at least pixel width * pixel height * number of components per

pixel .

EPRCPictureDataFormat

This object is used for the format of the Picture.

Value | Type Name Type Description

0 KEPRCPicture_PNG PNG format buffer

1 KEPRCPicture_JPG JPEG format buffer

2 KEPRCPicture_ BITMAP_RGB_BYTE flate-formatted pixel data.
Each element is an RGB triplet (3
components).

3 KEPRCPicture_ BITMAP_RGBA_BYTE flate-formatted pixel data.
Each element is an RGBA triplet (4
components).

4 KEPRCPicture_BITMAP_GREY_BYTE flate-formatted pixel data.
Each element is a single
luminance value (1 component).

5 KEPRCPicture_BITMAP_GREYA_BYTE flate-formatted pixel data.
Each element is a luminance/alpha
pair (2 components).

7.5.6 PRC_TYPE_GRAPH_TextureApplication
This type contains a definition of the complete texture pipe (multiple texturing) to be applied.
A definition of the unique variable follows:.

e material_generic_index represents an index in the material array (see
FileStructurelnternalGlobalData Section 7.3.5.2). This index should correspond to a

PRC_TYPE_GRAPH_Material, which defines the basic material parameters of the texture.

o texture_definition_index represents an index in the texture definition array (see Section

© ISO 2008 — Al rights reserved

61

7.3.5.2).

e next_texture_index represents an index in the material array (see Section 7.3.5.2).
This index should correspond to a PRC_TYPE_GRAPH_TextureApplication, which is used as
the next level of texture in multiple
texturing. This index is set to -1 if it is the last level of texture.

e UV_coordinates_index represents the texture mapping coordinates index (see
PRC_TYPE_TESS_FACE section 7.8.6 and below).

Required or Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_GRAPH_TextureApplication
Required ContentPRCBase Basic information associated with the entity
Required Unsignedinteger material_generic_index + 1

Required Unsignedinteger texture_definition_index + 1

Required Unsignedinteger next_texture_index + 1

Optional Unsignedinteger UV_coordinates_index + 1

UV_coordinates_index denotes the set of UV coordinates to consider in the PRC_TYPE_TESS_Face for
textured entities, as there might be several UV coordinates for each point.

See: number_of_texture_coordinate_indexes in PRC_TYPE_TESS_Face.

For example, a simple triangle with TWO texture coordinates index is described by
(normal,{texturel,texture2},point,

normal, {texturel,texture2},point,
normal, {texturel,texture2},point).

UV_coordinate_index indicates which of texturel or texture2 should be used.

7.5.7 PRC_TYPE_GRAPH_TextureDefinition
This type contains a single set of texture parameters to be used in a TextureApplication.
A definition for the unique variables follows:

e picture_index represents the index in the picture array (see FileStructurelnternalGlobalData Section

7.3.5.2).

e texture_dimension represents the dimension of the image. It's possible values are 1, 2, and 3 (1 and
3 are reserved for future use).

e texture_mapping_attributes is a bit field that represents the procedure used to apply the texture
(see texture mapping attributes table below). This information can be combined with
additional information, such as intensity, and involves color or alpha components.

e size_texture_mapping_attributes_intensities can be set either to 0 or to the number of procedures
deduced from texture_mapping_attributes. If it is set to 0, the intensity is set to 1. Otherwise,
its values should be in the range [0.0,1.0] and should correspond to each nonzero bit of
texture_mapping_attributes, respectively. The same is true for
size_texture_mapping_attributes_components, for which the default value is

62 © IS0 2008 — Al rights reserved

PRC_TEXTURE_MAPPING_COMPONENTS_RGBA (see texture mapping attributes table below)
Multiple procedures for texture application are reserved for future use.

Therefore size_texture_mapping_attributes_intensities and
size_texture_mapping_attributes_components contain at most one element.

If texture_mapping_attributes = PRC_TEXTURE_MAPPING_DIFFUSE,

then size_texture_mapping_attributes_intensities = 0. For each bit of
texture_mapping_attributes with a value of 1, intensity will be 1.0 by default.

If size_texture_mapping_attributes_components = 0, then for each bit of
texture_mapping_attributes with a value of 1, components will be
PRC_TEXTURE_MAPPING_COMPONENTS_RGBA by default.

Or:
texture_mapping_attributes = PRC_TEXTURE-MAPPING_DIFFUSE
size_texture_mapping_attributes_intensities = 1
texture_mapping_attributes_intensities[0] = 1.0
size_texture_mapping_attributes_components = 1
texture_mapping_attributes_components[0] =
PRC_TEXTURE_MAPPING_COMPONENTS_RGBA
texture_function : see texture function table below.
blend_src_rgb, blend_dst_rgb, blend_src_alpha, blend_dst_alpha;
blending modes are reserved for future use.
texture_applying_mode : see texture application mode table below.
alpha_test : reserved for future use.
alpha_test_reference : threshold value for alpha test; used in conjunction with alpha_test.
texture_wrapping_mode_S : Repeating mode; U direction; see wrapping mode table below.
texture_wrapping_mode_T : Repeating mode; V direction; see wrapping mode table below.
texture_wrapping_mode_R : Repeating mode; W direction (for multi dimension textures) ; see
wrapping mode table below.
texture_transformation : optional transformation on texture coordinates.

Required or Data Type Data Description
Option
Required Unsignedinteger PRC_TYPE_GRAPH_TextureDefinition
Required ContentPRCBase Basic information associated with the entity
Required Unsigned integer picture_index + 1
Required Character texture dimension = 2

(1 and 3 are reserved for future use)
Required Integer texture mapping type
Optional Integer If[texture mapping type ==

TEXTURE_MAPPING_OPERATOR]
texture mapping operator

Optional Bit has_transformation
Optional Cartesian Transformation If(has_transformation != 0)
Required Unsignedinteger texture mapping attributes
Required Unsignedinteger number of texture mapping attributes intensities

© ISO 2008 — Al rights reserved

63

(must be 0 or 1)

Optional ArrayOf[Doubles] texture_mapping_attributes_intensities[0] = 1.0

Required Unsignedinteger number of texture mapping attributes components
(must be 0 or 1)

Optional ArrayOf[Characters] texture_mapping_attributes_components[0] =
0x000F

Required Integer texture function (reserved for future use)

Optional ArrayOf[Double] If(texture_function ==KEPRCTextureFunctionBlend)

[red, green,blue,alpha]
blend color components In the range (0.0,

1.0)

Required Integer blend_src_rgb (reserved for future use)

Required Integer blend_src_alpha (reserved for future use)

Required Character texture application mode

Optional Integer If(texture application mode &
PRC_TEXTURE_APPLYING_MODE_ALPHATEST)

alpha_test

Optional Double alpha_test_reference

Required Character texture wrapping mode

Required integer texture_wrapping_mode_S

Optional integer If(texture_dimension > 1) texture_wrapping_mode_T

Optional Integer If(texture_dimension>2) texture_wrapping_mode_R

Required Bit texture_transfomation

Optional PRC_TYPE_GRAPH_ If(texture_transfomation) (see section

TextureTransformation PRC_TYPE_GRAPH_TextureTransformation 7.5.8)

Texture mapping type Integer value
Let the application choose. 1

Use the mapping coordinates that are stored on a 3D tessellation object. 2
Retrieve the UV coordinates on the surface as mapping coordinates 3
(reserved for future use).

Use the defined Texture mapping operator to calculate mapping coordinates 4
(reserved for future use)

Texture mapping operator Integer value

Unknown (default value) 1

Planar 2

Cylindrical 3

Spherical 4

64 © 1SO 2008 — All rights reserved

Cubic 5

Texture mapping attributes Integer value

Red component 0x0001

Green component 0x0002

Blue component 0x0004

RGB component 0x0007

Alpha component 0x0008

RGBA component 0x000F

Texture function Integer value

Unknown - Let the application choose. 1

Modulate - Combine lighting with texturing (default value). 2

Replace the object color with texture color data. 3

Blend 4

Decal 5

Texture application mode Character
value

Let the application choose. (All states disabled.) 0x0000

Use lighting mode. 0x0001

Use alpha test. 0x0002

Combine a texture with one-color-per-vertex mode. 0x0004

Texture wrapping mode Integer value

Unknown - Let the application choose. 1

Repeat - Display the repeated texture on the surface. 2

ClampToBorder - Clamp the texture to the border. Display 3

the surface color along the texture limits.

Clamp 4

Clamp to edge

Mirrored repeat

7.5.8 PRC_TYPE_GRAPH_TextureTransformation

This type contains the transformation data used in a texture definition. In the current release, texture
transformations are limited to two dimensions.

Required or Data Type Data Description

© 1SO 2008 — All rights reserved

Option

Required Unsignedinteger PRC_TYPE_GRAPH_TextureTransformation

Required Boolean If(true) the S coordinate parameter is inverted.

Required Boolean If(true) the T coordinate parameter is inverted.

Required Boolean If(true) the matrix transformation contains only 2-
dimensional terms. (Always true in this version.)

Required Transformation 2d transformation (see section 7.4.11
Transformations)

7.5.9 PRC_TYPE_GRAPH_LinePattern

This type contains the information used to display the dashes and gaps that comprise a line pattern.

Required or Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_GRAPH_LinePattern

Required ContentPRCBase Basic information associated with the entity

Required Unsignedinteger number of unique dash-array elements

Optional ArrayOf[Doubles] lengths of each type of alternating dashes and gaps,
length

Required Double the offset within the dash pattern at which to start the
dash, phase

Required Boolean If(true) the pattern aspect that scales with the view.

If a pattern scales with the view, the unit of length is the same as the product occurrence it is associated with:
otherwise, lengths are to be interpreted as a ratio.

7.5.10 PRC_TYPE_GRAPH_FillPattern

Abstract class for a two-dimensional display style. This type contains information related to a fill pattern, which
can be one of the following types of patterns:

e Dotting pattern (PRC_TYPE_GRAPH_DottingPattern)

e Hatching pattern (PRC_TYPE_GRAPH_HatchingPattern)

e Solid pattern (PRC_TYPE_GRAPH_SolidPattern)

e Vectorized picture pattern (PRC_TYPE_GRAPH_VPicturePattern)
7.5.11 PRC_TYPE_GRAPH_DottingPattern
This type describes a two-dimensional filling pattern with points. By default, this pattern describes a regular
grid of points spaced with pitch (zizag==false). If zizag is true, the points are offset in X by pitch/2.0 for the odd

row.

e next_pattern_index represents the index of the next pattern (superimposed) in the pattern array
(see FileStructurelnternalGlobalData Section 7.3.5.2).

66 © IS0 2008 — Al rights reserved

e Color_index represents the index into the color array (see FileStructurelnternalGlobalData Section

7.3.5.2).
Required or Data Type Data Description
Option
Required Unsigned integer PRC_TYPE_GRAPH_DottingPattern
Required ContentPRCBase Basic information associated with the entity
Required Unsigned integer next_pattern_index + 1
Required Double pitch of point spacing
Required Boolean If (true), the points are offset in X by (pitch/2.0) for the
odd row.
Required Integer color_index + 1

7.5.12 PRC_TYPE_GRAPH_HatchingPattern

This type describes a two-dimensional filling pattern with hatches. This pattern is defined by a group of infinite

lines, each having its own dash pattern and color.

e next_pattern_index represents the index of the next pattern (superimposed) in the pattern array
(see FileStructurelnternalGlobalData Section 7.3.5.2).

Required or Data Type Data Description
Option
Required Unsignedinteger PRC_TYPE_GRAPH_HatchingPattern
Required ContentPRCBase Basic information associated with the entity
Required Unsigned integer next_pattern_index + 1
Required Unsignedinteger number of pattern hatching lines
Required ArrayOf[groups of (2 D vector start point
5 Doubles 2 D vector end point
1 Integer] Double angle

Index_of_line_style + 1)

7.5.13 PRC_TYPE_GRAPH_SolidPattern

This type defines a two-dimensional filling pattern with a particular style (color, material, texture).

e next_pattern_index represents the index of the next pattern (superimposed) in the pattern array
(see FileStructurelnternalGlobalData Section 7.3.5.2)
e material_index is the index into the material array. (see FileStructurelnternalGlobalData Section

7.3.5.2)

e color_index is the index into the color array. (see FileStructurelnternalGlobalData Section 7.3.5.2)

© ISO 2008 — Al rights reserved

67

Required or Data Type Data Description
Option
Required Unsignedinteger PRC_TYPE_GRAPH_SolidPattern
Required ContentPRCBase Basic information associated with the entity
Required Unsignedinteger next_pattern_index + 1
Required Boolean If (true)

the fill is a material

else

a plain color.

Required Unsignedinteger material_index+1 OR color_index+1

7.5.14 PRC_TYPE_GRAPH_VpicturePattern

This type defines a two-dimensional filling pattern consisting of a vectorized picture. In this version a
restricted version of PRC_TYPE_TESS_Markup is used. The allowed types are:

e Polyline

e Triangles

e Color

e Line Stipple
e Points

e Polygon

e Line Width

next_pattern_index represents the index of the next pattern (superimposed) in the pattern array (see

FileStructurelnternalGlobalData Section 7.3.5.2).

Required or Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_GRAPH_VpicturePattern

Required ContentPRCBase Basic information associated with the entitiy

Required Unsignedinteger next_pattern_index + 1

Required ArrayOf[Doubles] X and Y dimensions of the pattern

Required PRC_TYPE_TESS_Markup PRC_TYPE_TESS_Markup object (See MARKUP
Section for types)

68 © 1SO 2008 — All rights reserved

7.5.15 PRC_TYPE_GRAPH_AmbientLight

This type defines the ambient illumination of a scene.

Required or Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_GRAPH_AmbientLight
Required ContentPRCBase Basic information associated with the entity
Optional Unsignedinteger ambient_index + 1

Required Unsignedinteger diffuse_index+ 1

Required Unsignedinteger emissive_index + 1

Required Unsignedinteger specular_index + 1

7.5.16 PRC_TYPE_GRAPH_PointLight

This type defines scene light from a point with attenuation factors.

Required or Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_GRAPH_PointLight

Required ContentPRCBase Basic information associated with the entity

Optional Unsignedinteger Ambient_index + 1

Required Unsignedinteger diffuse_index + 1

Required Unsignedinteger emissive_index + 1

Required Unsignedinteger specular_index + 1

Required ArrayOf[Doubles (3D point)] location of light

Required Double constant light attenuation factor in the range [0.0,1.0]
Required Double linear light attenuation factor in the range [0.0,1.0]
Required Double quadratic light attenuation factor in the range [0.0,1.0]

The attenuation factor is defined (like OpenGl) as:
F = 1/(Cc + CI*d +Cqg*d*d)

Where:

d = postive distance between the light’s position and the vertex

Cc = constant light attenuation
Cl = linear light attenuation.

Cqg = quadratic light attenuation

© ISO 2008 — Al rights reserved

69

7.5.17 PRC_TYPE_GRAPH_DirectionalLight

This type defines scene directional illumination.

Required or Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_GRAPH_DirectionalLight

Required ContentPRCBase Basic information associated with the entity
Optional Unsignedinteger ambient_index + 1

Required Unsignedinteger diffuse_index + 1

Required Unsignedinteger emissive_index + 1

Required Unsignedinteger specular_index + 1

Required ArrayOf[Doubles (3D vector)] | direction of light

Required Double light intensity, a coefficient for the light in the range

[0.0,1.0]

7.5.18 PRC_TYPE_GRAPH_SpotLight

This type defines scene light from a spot illumination, a point, with angle, intensity and attenuation parameters.

Required or Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_GRAPH_SpotLight

Required ContentPRCBase Basic information associated with the entity

Optional Unsignedinteger ambient_index + 1

Required Unsignedinteger diffuse_index + 1

Required Unsignedinteger emissive_index + 1

Required Unsignedinteger specular _index+ 1

Required ArrayOf[Doubles (3D point)] location of light

Required Double constant light attenuation factor in the range [0.0,1.0]

Required Double linear light attenuation factor in the range [0.0,1.0]

Required Double quadratic light attenuation factor in the range [0.0,1.0]

Required ArrayOf[Doubles (3D vector)] | direction of light

Required Double fall-off angle: the maximum spread angle of the light
source in degrees in the range [0.0,90.0] or 180,0
degrees.

Required Double fall-off exponent: intensity distribution of the light in

the range [0.0,128.0]

The fall_off angle is the angle between the axis of the cone and a ray along the edge of the cone. A value of

180 degrees specifies that the light is emitted in all directions.

70

© ISO 2008 — All rights reserved

7.5.19 PRC_TYPE_GRAPH_SceneDisplayParameters
Type defines parameters used for scene visualization, including ambient light and camera.

index_of_line_style: index into the line style array stored in the FileStructurelnternalGlobalData Section
7.3.5.2. This array contains a list of PRC_TYPE_GRAPH_Style objects.

is_active: since there can be more than one object of this type, this boolen is used to specify if this object is
the currently active scene.

rotation center: This define the center of rotation of the scenegraph. In other words, all objects in the
scenegraph must turn around this point if this SceneDisplayParameters is activated.

Required or Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_GRAPH_SceneDisplayParameter
s

Required ContentPRCBase Basic information associated with the entity

Required Boolean Is_active

Required Unsignedinteger number of lights

Required ArrayOf[PRC_TYPE_GRAPH_light (see the sections on the light objects for

objects] details)

Required Boolean If (true), a camera is defined.

Optional PRC_TYPE_GRAPH_Camera (see Section 7.5.20 for details)

Required Boolean If (true), a rotation center is defined

Optional ArrayOf[Doubles (3D vector)] rotational center

Required Unsignedinteger number of clipping planes

Optional ArrayOf[PRC_TYPE_SURF_ (see Section 7.11.13 for details)

Plane]

Required Unsignedinteger Index_of_line_style+1 (background)

Required Unsignedinteger Index_of_line_style+1 (default)

Required Unsignedinteger number of default styles per type

Optional ArrayOf[Unsignedinteger] List of (type, line_style_index+1) pairs (see
section 7 for a list of base entities)

Optional Boolean If (true), the position of lights, camera and
clipping planes are absolute even when those
parameters belong to a sub assembly.

7.5.20 PRC_TYPE_GRAPH_Camera

This type defines the camera used in scene visualization. It contains attributes such as its position, view angle,
and zoom.

Required or Data Type Data Description

© IS0 2008 — All rights reserved 71

Option

Required Unsignedinteger PRC_TYPE_GRAPH_Camera

Required ContentPRCBase Basic information associated with the entity

Required Boolean If (true), projection is orthographic, else perspective.

Required ArrayOf[Doubles] position of the camera (3D Position)

Required ArrayOf[Doubles] "look at" point (3D Position)

Required ArrayOf[Doubles] up vector (3D Vector)

Required Double field of view angle in radian (X direction) if
perspective, Scale X if orthographic

Required Double field of view angle in radian (Y direction) if
perspective, Scale Y if orthographic

Required Double ratio of X to Y

Required Double near clipping plane distance from the viewer (positive
value)

Required Double far clipping plane distance from the viewer (positive
value)

Required Double zoom factor (default 1.0)

7.6 Representation ltems

7.6.1 Entity Types

Type Name Type Value Referenceable
PRC_TYPE_RI PRC_TYPE_ROOT + 230
PRC_TYPE_RI_Representationalltem PRC_TYPE_RI+1
PRC_TYPE_RI_BrepModel PRC_TYPE_RI + 2 yes
PRC_TYPE_RI_Curve PRC_TYPE_RI +3 yes
PRC_TYPE_RI_Directioni PRC_TYPE_RI+4 yes
PRC_TYPE_RI_Plane PRC_TYPE_RI +5 yes
PRC_TYPE_RI_PointSet PRC_TYPE_RI + 6 yes
PRC_TYPE_RI_PolyBrepModel PRC_TYPE_RI+7 yes
PRC_TYPE_RI_PolyWire PRC_TYPE_RI +8 yrs
PRC_TYPE_RI_Set PRC_TYPE_RI +9 yes
PRC_TYPE_RI_CoordinateSystem PRC_TYPE_RI + 10 yes

72

© ISO 2008 — All rights reserved

7.6.2 PRC_TYPE_ RI

This is an abstract base class. When PRC_TYPE_RI class is referenced in this documentation of the PRC
File Format Specification, one of its constituent classes will be physically present in the file.

This is an abstract class to group the following classes:
e PRC_TYPE_RI_Representationltem
e PRC_TYPE_RI_BrepModel
e PRC_TYPE_RI_Curve
e PRC_TYPE_RI_Direction
e PRC_TYPE_RI_Plane
e PRC_TYPE_RI_PointSet
e PRC_TYPE_RI_PolyBrepModel
e PRC_TYPE_RI_PolyWire
e PRC_TYPE-RI_Set

e PRC_TYPE_RI_CoordinateSystem
7.6.3 PRC_TYPE_RI_Representationltem

7.6.3.1 General

This is an abstract class for all representation items. PRC_TYPE_RI_Representationltem denotes the abstract
type from which any RI type derives and gathers all data common to any RI type.

7.6.3.2 RepresentationltemContent

This represents common data for all PRC_TYPE_RI entities.

Index_local_coordinate_system represents, if defined with a value other than -1, the index of the coordinate
system as stored in FileStructurelnternalGlobalData. The transformation is used to position geometry or
tessellation. The general principal is that this transformation (LocalMatrix) must be multiplied by the global
matrix to obtain the transformation using

GlobalMatrix x LocalMatrix

Index_tessellation represents, if defined with a value other that -1, the index in the FileTessellation section
within a FileStructure

Required or Option | Data Type Data Description

Required PRC_TYPE_ROOT_PRCBaseWithGraphics

© IS0 2008 — All rights reserved 73

Required Unsignedinteger Index_local_coordinate_system

Required Unsignedinteger Index_tessellation

7.6.4 PRC_TYPE_RI_BrepModel
This type represents a brep model.

If the brep model has a body in the exact geometry section of the FileStructure, the index of the topological
context and the index of the body within the topological context identify the body.

A boolean flag indicates if the body is open or closed. Even if there is no body in the exact geometry section,
tessellation data may represent a closed body.

Required or Option | Data Type Data Description

Required Unsignedinteger PRC_TYPE_RI_BrepModel

Required RepresentationitemContent

Required TRUE if brep model has a body
Bit in the exact geometry section of

the File Structure ; else FALSE

Option: TRUE Index of the topological context
Unsignedinteger in the exact geometry section of
the File Structure

Option: TRUE . Index of the body within the
Unsignedinteger .
topological context
Required Boolean TRUE if the body is closed; else
FALSE
Required UserData User defined data

7.6.5 PRC_TYPE_RI_Curve
This type represents a curve.

If there is a wire body in the exact geometry section of the FileStructure, the index of the topological context
and the index of the body within the topological context identify the wire body.

Required or Option | Data Type Data Description

74 © 1SO 2008 — All rights reserved

Required Unsignedinteger PRC_TYPE_RI_Curve
Required RepresentationltemContent
Required TRUE if curve has a wire body in
Bit the exact geometry section of
the File Structure ; else FALSE
Option: TRUE Index of the topological context
UnsignedInteger in the exact geometry section of
the File Structure
Option: TRUE . Index of the wire body within
Unsignedinteger .
the topological context
Required UserData User defined data

7.6.6 PRC_TYPE_RI_Direction

This type represents a direction vector with an optional origin. This is used to define an axis.

This entity can be used to define infinite construction lines.

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_RI_Direction

Required RepresentationltemContent

Required Bit TRUE if the direction has an
origin; else FALSE

OPTION: TRUE Vector3d Direction origin

Required Vector3d Direction vector

Required UserData User defined data

7.6.7 PRC_TYPE_RI_Plane

This type represents a construction plane as opposed to a planar surface.

If the plane has an associated body in the exact geometry section of the FileStructure, the index of a
topological context and an index of the body within the topological context identify the body.

© ISO 2008 — Al rights reserved

75

Required or Option | Data Type Data Description

Required Unsignedinteger PRC_TYPE_RI_Plane

Required RepresentationltemContent Common data

Required Bit TRUE if plane has associated
body in the B-rep model; else
FALSE

OPTION: TRUE Unsignedinteger Index of a topological context
in the exact geometry section
containing the body

OPTION: TRUE Unsignedinteger Index of a body within the
topological context

Required UserData Users defined data

7.6.8 PRC_TYPE_RI_PointSet

This type represents a set of 3D points.

Required or Option Data Type Data Description
Required Unsignedinteger PRC_TYPE_RI_PointSet
Required RepresentationltemContent

Required Unsignedinteger Number of points
Required ArrayOf [Vector3d] Array of points in the set
Required UserData User defined data

7.6.9 PRC_TYPE_RI_PolyBrepModel

This type represents a PolyBrepModel defined by the tessellation data stored in the

RepresentationltemContent. A boolean flag indicates if the tessellation is closed or open.

Required or Option Data Type

Data Description

76

© ISO 2008 — All rights reserved

Required

Unsignedinteger

PRC_TYPE_RI_PolyBrepModel

Required RepresentationltemContent

Required Boolean TRUE if the tessellation is
closed; else FALSE

Required UserData User defined data

7.6.10 PRC_TYPE_RI_PolyWire

This type represents a PolyWire defined by the tessellation data stored in the RepresentationitemContent.

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_RI_PolyWire
Required RepresentationltemContent
Required UserData User defined data

7.6.11 PRC_TYPE_RI_Set

This represents the logical grouping of an arbitrary number of representational items.

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_RI_Set
Required RepresentationltemContent
Required Unsignedinteger Number of representation
items in the set
Required ArrayOf An array of any of the
[PRC_TYPE_RI_Representationltem] | PRC_TYPE_RI_xx items
Required UserData User defined data

7.6.12 PRC_TYPE_RI_CoordinateSystem

A coordinate system can have one of two distinct roles

e As arepresentation item belonging to the tree of a part definition.

© ISO 2008 — Al rights reserved

77

e Anentity to position other representation items. In this role, the coordinate system exists in
the global section of the FileStructure (see FileStructureilnternalGlobalData and
PRC_TYPE_RI description).

Required or | Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_RI_CoordinateSystem
Required RepresentationltemContent

PRC_TYPE_MISC_GeneralTransformation
Required Transformation or
PRC_TYPE_MISC_CartesianTransformation

Required UserData User defined data

7.7 Markup

7.7.1 Entity Types

Type Name Type Value Referenceable
PRC_TYPE_MKP PRC_TYPE_ROOT + 500
PRC_TYPE_MKP_View PRC_TYPE_MKP + 1 yes
PRC_TYPE_MKP_Markup PRC_TYPE_MKP + 2 yes
PRC_TYPE_MKP_Leader PRC_TYPE_MKP + 3 yes
PRC_TYPE_MKP_Annotationitem PRC_TYPE_MKP + 4 yes
PRC_TYPE_MKP_AnnotationSet PRC_TYPE_MKP +5 yes
PRC_TYPE_MKP_AnnotationReference PRC_TYPE_MKP + 6 yes

7.7.2 PRC_TYPE_MKP

This is the basic type for all 3D markups (annotations). Markups are non-geometric entities that aid viewers in
understanding PRC model geometry. Markup types and subtypes include notes, dimensional annotations,
geometric tolerance blocks, and weld symbols. Markups are linked to items, such as part geometry or
assemblies. Markups may be attached to linked items by leaders (leader lines) for clarity.

Markups may contain tesselation data as patterns to define a vectorized picture incorporated in the markup.

In this version, only the following entities may incorporate tesselated data: polyline, triangles, color, line style,
points, polygon, line width.

78 © IS0 2008 — Al rights reserved

7.7.3 PRC_TYPE_MKP_View

3D markups can be grouped into views that are associated with planes in which markup annotations lie. A
view contains an array of annotation entities. A view can also define visibilities and positions of entities.

Required or | Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_MKP_View

Required PRC_TYPE_ROOT_ See Section 7.2.4 for details.
PRCBaseWithGraphics

Required Unsignedinteger Number of annotations

Required Arrayof| ReferenceUnique | Unique identifiers for annotation entities
Identifiers]

Required Annotation Plane See Section 7.3.10.5 for data definition.

Required Bit scene_display_parameters

Optional If[scene_display_parameters] | See Section 7.5.19 for data definition

SceneDisplayParameters

Required Boolean If true then view is an annotation view

Required Boolean If true the view is the default view

Required Boolean If true the plane is only indicating a direction

Required Unsignedinteger Number of linked items in markup view

Required Arrayof Unique identifiers of linked items
[ReferenceUniqueldentifiers]

Required Unsignedinteger Number of display filters

Required Arrayof[PRC_TYPE_ASM_Filte | Display Filters
1

Optional User Data See Section 8.6 for details

Definition of ReferenceUniqueldentifier:

reference_in_same_file_structure indicates whether the object is in the same file structure.

Required or | Data Type Data Description

Optional

Required Unsignedinteger PRC_TYPE_MISC_ReferenceOnPRCBa

se

Required Unsignedinteger Reference type

Required Boolean reference_in_same_file_structure

Optional If['reference_in_same_file_structure] | target_file_structure
CompressedUniquelD See Section 8.2.2 for details

Required Unsignedinteger Unique_identifier for entity

© 1SO 2008 — All rights reserved

79

7.7.4 PRC_TYPE_MKP_Markup
This is the Basic type for simple markups. Each markup is defined by a type and a subtype. For instance, a
markup may by of the type "dimension" and the subtype "dimension radius edge" indicating that this
annotation points to the radius arc of the edge of an object.

Markup types are as follows:

Enum Label Description (value)

KEPRCMarkupType_Unknown Unknown value (0)

KEPRCMarkupType_Text Plain text (1)

KEPRCMarkupType_Dimension Dimension (2)

KEPRCMarkupType_Arrow Arrow (3)

KEPRCMarkupType_Balloon Balloon (4)

KEPRCMarkupType_CircleCenter Center of Circle (5)

KEPRCMarkupType_Coordinate Coordinate (6)
KEPRCMarkupType_Datum Datum (7)
KEPRCMarkupType_Fastener Fastener (8)
KEPRCMarkupType_Gdt Geometric Dimensioning and

Tolerance (GD&T) Block (9)

KEPRCMarkupType_Locator Locator (10)

KEPRCMarkupType_MeasurementPoint Point (11)

KEPRCMarkupType_Roughness Roughness (12)

KEPRCMarkupType_Welding Welding (13)
KEPRCMarkupType_Table Table (15)
KEPRCMarkupType_Other Other (16)

Markup subtypes are as follows:

Enum Label

Description (value)

KEPRCMarkupSubType_Datum_Ident

Datum Identifier subtype (1)

KEPRCMarkupSubType_Datum_Target

Datum Target subtype (2)

KEPRCMarkupSubType_Dimension_Distance

Distance Dimension (1)

80

© ISO 2008 — All rights reserved

KEPRCMarkupSubType_Dimension_Distance_Offset

Dimension offset distance (2)

KEPRCMarkupSubType_Dimension_Distance_Cumulate

Dimension cumulative distance (3)

KEPRCMarkupSubType_Dimension_Chamfer

Dimension chamfer callout (4)

KEPRCMarkupSubType_Dimension_Slope

Dimension slope (5)

KEPRCMarkupSubType_Dimension_Ordinate

Dimension ordinate (6)

KEPRCMarkupSubType_Dimension_Radius

Dimension radius (7)

KEPRCMarkupSubType_Dimension_Radius_Tangent

Tangent radius dimension (8)

KEPRCMarkupSubType_Dimension_Radius_Cylinder

Cylinder radius dimension (9)

KEPRCMarkupSubType_Dimension_Radius_Edge

Radius edge dimension (10)

KEPRCMarkupSubType_Dimension_Diameter

Diameter dimension (11)

KEPRCMarkupSubType_Dimension_Diameter_Tangent

Tangent diameter dimension (12)

KEPRCMarkupSubType_Dimension_Diameter_Cylinder

Cylinder diameter dimension (13)

KEPRCMarkupSubType_Dimension_Diameter_Edge

Diameter edge dimension (14)

KEPRCMarkupSubType_Dimension_Diameter_Cone

Cone diameter dimension (15)

KEPRCMarkupSubType_Dimension_Length

Length dimension (16)

KEPRCMarkupSubType_Dimension_Length_Curvilinear

Curvilinear length dimension (17)

KEPRCMarkupSubType_Dimension_Length_Circular

Circular length dimension (18)

KEPRCMarkupSubType_Dimension_Angle

Angle Dimension (19)

KEPRCMarkupSubType_Gdt_Fcf

Geometric Dimensioning and Tolerancing (1)

KEPRCMarkupSubType_Welding_Line

Welding line (1)

KEPRCMarkupSubType_Welding_Spot

Welding Spot (2)

KEPRCMarkupSubType_Other_Symbol_User

Symbol User (1)

KEPRCMarkupSubType_Other_Symbol_Utility

@

KEPRCMarkupSubType_Other_Symbol_Custom

(©)

© 1SO 2008 — All rights reserved

81

KEPRCMarkupSubType_Other_GeometricReference

Geometric Reference (4)

index_tessellation represents, if defined (by specifying a value other than -1), the index of the

tessellation in the tessellation section of

the

file structure. This index should point to a

PRC_TYPE_TESS_Markup type object associated with this markup.

Required or | Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_MKP_Markup

Required PRC_TYPE_ROOT_ See Section 7.2.4 for details
PRCBaseWithGraphics

Required Unsignedinteger type

Required Unsignedinteger sub_type

Required Unsignedinteger Number_of_linked_items

Required Unique identifiers for each linked item

(at least one) Arrayof[ReferenceUniquelde
ntifiers]

Required Unsignedinteger Number_of_leaders

Optional Arrayof[ReferenceUniquelde | Unigue identifiers for each leader
ntifiers]

Required Unsignedinteger index_tessellation + 1

Optional User Data See Section 8.6 for details

7.7.5 PRC_TYPE_MKP_Leader

This is the basic type for a 3D markups leader. Leaders attach the markup annotation item to the annotation

reference.

Required or | Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_MKP_Leader

Required PRC_TYPE_ROOT_ See Section 7.2.4 for details
PRCBaseWithGraphics

Required Arrayof[ReferenceUniquelde | Unique identifiers for each linked item
ntifiers]

Optional Arrayof[ReferenceUniquelde | Unique identifiers for each leader
ntifiers]

Required Unsignedinteger index_tessellation + 1

Optional User Data See Section 8.6 for details

7.7.6 PRC_TYPE_MKP_Annotationltem

82

© ISO 2008 — All rights reserved

This section contains the data for a single annotation item.

Required or | Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_MKP_Annotationltem

Required PRC_TYPE_ROOT_ See Section 7.2.4 for details
PRCBaseWithGraphics

Required ReferenceUniqueldentifier Unique identifier for the annotation item

Optional User Data See Section 8.6 for details

7.7.7 PRC_TYPE_MKP_AnnotationSet
An annotation set is a group of annotation items or subsets. For example, a tolerance defined by a datum and
a feature control frame are described by an annotation set with two annotation items, where the items point
respectively to a markup of type "datum" and a markup of type "feature control frame."

Required or | Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_MKP_AnnotationSet

Required PRC_TYPE_ROOT_ See Section 7.2.4 for details
PRCBaseWithGraphics

Required unsigned integer Number of entities in the annotation set

Optional ArrayOf[AnnotationEntity] For each entity in the annotation set.

Optional User Data See Section 8.6 for details

The AnnotationEntity entry above will be one of the type: PRC_TYPE_MKP_Annotationltem or
PRC_TYPE_MKP_AnnotationSet or PRC_TYPE_MKP_AnnotationReference.

7.7.8 PRC_TYPE_MKP_AnnotationReference
An annotation reference stores explicit combinations of markup data with modifiers that can then be used to
define other annotations. An example would be a feature control frame.

Required or | Data Type Data Description

Option

Required Unsignedinteger PRC_TYPE_MKP_AnnotationReference

Required PRC_TYPE_ROOT_ See Section 7.2.4 for details
PRCBaseWithGraphics

Required unsigned integer Number of linked items in the annotation reference

Optional Arrayof[ReferenceUniquelde | List of the identifiers of the linked items in the
ntifiers] reference

© IS0 2008 — Al rights reserved 83

7.8 Tessellation

7.8.1 Entity Types

Type Name

Type Value

Referenceable

PRC_TYPE_TESS

PRC_TYPE_ROOQOT + 230

PRC_TYPE_TESS Base

PRC _TYPE_TESS + 1

PRC_TYPE_TESS_3D

PRC_TYPE_TESS + 2

PRC_TYPE_TESS_3D_Compressed

PRC_TYPE_TESS + 3

PRC_TYPE_TESS Face

PRC _TYPE_TESS + 4

PRC_TYPE_TESS_3D_Wire

PRC_TYPE_TESS +5

PRC_TYPE_TESS_Markup

PRC_TYPE_TESS + 6

7.8.2 PRC_TYPE_TESS

7.8.3 PRC_TYPE_TESS Base

Abstract root type for any tessellated entity.

7.8.4 ContentBaseTessData

This base class stores the coordinates of the tessellated data.

is_calculated is a flag denoting whether the tessellation was calculated during import or read directly from

the native CAD file.

number_of_coordinates represents the number of doubles in the coordinate array.

coordinates is an array of doubles.

The interpretation of the coordinates data depends upon the entity type containing this array. See
PRC_TYPE_TESS_3D, PRC_TYPE_TESS_3D_Compressed, PRC_TYPE_TESS_3D_Wire, or
PRC_TYPE_TESS_Markup for a description of the interpretation of the coordinates array within these

contexts.
Required or | Data Type Data Description
Option
Required Boolean is_calculated
Required Unsignedinteger number_of_coordinates
Required ArrayOf[Double] coordinates
84 © 1SO 2008 — All rights reserved

7.8.5 PRC_TYPE_TESS 3D

7.85.1 General
A PRC_TYPE_TESS 3D entity contains tessellation data for an ordered collection of faces
(PRC_TYPE_TESS_Face) as well as tessellation data for the wire boundaries of the faces. The notion of face
does not necessarily reflect that the data comes from geometrical faces; it is also possible to store tessellation
data within this entity which are an unordered set of triangles.
The following is a description of the data in the file:

e The ContentBaseTessData class defines the number_of_coordinates and coordinates of the

tessellation data. It also defines a flag, is_calculated, indicating whether the data was calculated

during import or comes directly from a CAD system. Data in the coordinates array are interpreted as
the x, y, and z coordinates of the 3D points for the entire tessellation.

e number_of_normal_coordinates is size of the normal_coordinates array
e normal_coordinates is an array of doubles. Data in the normal_coordinates array are interpreted

as the (nx, ny, nz) values of a normal vector at a 3D point. A 3D point may have multiple normal
values each associated with a different triangularization within the tessellated data.

e number_of_triangulated_indices is the size of the triangulated_index_array.

e triangulated_index_array is an array of integers which are an index into the coordinates or
normal_coordinates arrays. Because these arrays represents triples of numbers of the (x, y, z) of a
point or the (nx, ny, nz) values of a normal vector, the index is always a multiple of 3. The
interpretation of the data in this array is described below.

e number_of_wire_indices is the size of the wire index array

e wire_indices are indices into the coordinates array. The indicies in this array are grouped into the
indices for a wire contour of the face. The array wire_index within the PRC_TYPE_TESS_Face
indicates the start of the wire for each of the wire contours within a specific face.

e has_faces is true if this entity is built using geometrical faces.

e has_loops is true if this entity is built using geometrical faces and loops (wires of faces denote the
loops).

e number_of_face_tessellation_data is the faces in the array of face_tessellation_data

e face_tessellation_data an array of PRC_TYPE_TESS_Face objects

e Number_of_texture_coordinates is the size of the texture coordinate array

e Texture_coordinates texture coordinate (see PRC_TYPE_GRAPH_TextureApplication)

e crease_angle is the threshold angle between two faces.
When recalculating the normals at points, the angle between two adjacent triangles is calculated and

compared to the crease_angle. If it is below crease_angle, the normal would be shared at this point for
the two triangles; otherwise, two distinct normals will exist.

© IS0 2008 — Al rights reserved 85

http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/group___p_r_c___t_y_p_e___t_e_s_s.html#g176e893e77b615b5c708222f0da90e55�

If must_recalculate_normals is set to true, the normals must be recalculated at loading according to
the crease_angle. In this case, no normal indices are stored in the triangulated_index_array and
the normal_coordinate array size is set to 0.

However, all the indices stored in PRC_TYPE_TESS_Face are not affected by the value of
must_recalculate_normals. Specifically, used_entities_flag and start_triangulated are set as if
normal indices were stored.

For instance, when storing a tessellation data with two faces, with one triangle each that have a
common edge, both with a flag used_entities_flag = PRC_FACETESSDATA_Triangle, and with
must_recalculate_normals =true, this is what will be stored :

o number_normal_coordinates = 0; (It Would be 12 with must_recalculate_normals = false)

o number_of_coordinates = 12;

o number_of_triangulated_indicies = 6. (It Would be 12 with must_recalculate_normals =
false)

o all of the data for PRC_TYPE_TESS_Face is identical regardless of the
must_recalculate_normals flag setting.

The basic tessellation data consists of

an array coordinates representing the (x, y, z) coordinates of the 3D points ot the tessellation;

an array normal_coordinates representing the (nx, ny, nz) components of normal vectors at the
points; a given point may have multiple normal vectors, one for each vertex of the point in the
triangularization data of the tessellation;

an array triangulated_index_array of indicies into either the coordinates or normal_coordinates
array. The entries in this array are grouped into one of the types of triangularization data (PRC
Tessellation Type).

o The type of triangularization defines the sequence and type of data (point or normal) of the
triangularization data. For instance, a PRC_FACETESSDATA_Triangle is described with 6
indices (normal, point, normal, point, normal, point). Note that it is mandatory to specify at
least one normal per triangularization data.

o The order of tessellated faces in face_tessellation_data defines the order of triangularization
data in the triangulated_index_array. The triangularization data for the first face is first in the
triangulated_index_array, followed by the data for the second face, etc.

o The triangularization data within a face consists of multiple triangulations. Each triangulation
is of one of the types described in PRC Tessellation Types and identical types are grouped
together. The bit fields of the used_entities_flag indicates if that type of triangularization data
is present in the triangularization data for the face and the order of the bit fields from low to
high (0 to 31) indicate the order of data in the TriangulatedData array. See
PRC_TYPE_TESS_Face for a description of the face data.

A face tessellation corresponds to a geometrical face if faces are used (as denoted by has_faces). Otherwise,
itis a large container that can be used for any tessellated data.

Wire_indices are the indicies describing the face’s wire contours. See PRC_TYPE_TESS_3D_Wire and
PRC_TYPE_TESS_Face for respective descriptions of how to interpret the data in the wire_indices array.

86

© ISO 2008 — All rights reserved

Texture coordinates are also to be interpreted according to the final graphics of each face_tessellation.
Those graphics are specified either in face_tessellation or by the representation item owning the
PRC_TYPE_TESS_3D. Then, the graphics will correspond to a texture with an appropriate number of
coordinates as explained in PRC_TYPE_GRAPH_TextureApplication type description.

Required or Option

Data Type

Data Description

Must_calculate_normals

Required Unsignedinteger PRC_TYPE_TESS_3D
Required ContentBaseTessData Tessellation coordinates
Required Boolean has_faces
Required Boolean has_loops
Required Boolean Must_calculate_cormals
Option: Character Normal_recalculation_flags
Must_calculate_normals

(not used should be zero)
Option: Double Crease_angle

Required Unsignedinteger Number_of_normal_coordinates
Required ArrayOf[Double] Normal_coordinates

Required Unsignedinteger Number_of_wire_indices
Required ArrayOf[Unsigninteger] Wire_indices

Required Unsignedinteger Number_of_triangulated_indicies
Required ArrayOf[Unsignedinteger] Triangulated_index_array
Required Unsignedinteger Number_of face_tessellation
Required ArrayOf[PRC_TYPE_TESS_Face] | Face _tessellation_data
Required Unsignedinteger Number_of_texture_coordinates
Required ArrayOf[Double] Texture coordinates

7.8.5.2 Example: triangle

triangle_indice=[03603 9] (It Wouldbe=[00336600 339 9] with must_recalculate_normals =

false)

Triangulated indices are the point indices and normal indices describing the face’s triangulated representation
(triangles, triangle fans, triangle stripes) in the array of points. Therefore, all these indices are multiples of
3.Triangles indices have to be ordered particulary such that they are consistent with triangle’s normal
orientation. For instance, in the following figure, vertices have to be stored counterclockwise if the Triangle

normal is such that:

© ISO 2008 — Al rights reserved

87

normal.(ABMAC) > 0 with . is the scalar product
and * is the vector product

C

A B
7.8.5.3 Example: triangle fan

A triangle fan describes a set of connected triangles that share one central vertex. If N is the number of
triangles in the fan, the number of vertices describing it is N+2. Triangle indices have to respect a precise
order.The index that references the central vertex is stored first; then [F E D C B] or [B C D E F] are stored
depending on the triangle's normal orientation.

Diagram of four triangles with a common vertex A.

7.8.5.4 Example: triangle strip

A triangle strip is a series of connected triangles, sharing vertices.

Diagram of four triangles, 1, 2, 3, and 4, with vertices A, B, C, D, E, F

7.85.5 PRC Tessellation Types

0x40000000 PRC_FACETESSDATA_NORMAL_Single If this flag is set, the corresponding
OneNormal entity (see PRC
Tessellation Types) is planar and only
one normal is defined for the entity.
Otherwise, one normal per point is

88 © IS0 2008 — Al rights reserved

defined. This flag is only used for
PRC_FACETESSDATA_*OneNormal
entities

0x0001 | PRC_FACETESSDATA | Not used
_Polyface
0x0002 | PRC_FACETESSDATA | described with 6 indices (normal,point,normal,point,normal,point).
_Triangle
0x0004 | PRC_FACETESSDATA | described with 2*n indices (normal,point,... ,normal,point).
_TriangleFan
0x0008 | PRC_FACETESSDATA | described with 2*n indices (normal,point,... ,normal,point).
_TriangleStripe
0x0010 | PRC_FACETESSDATA | Not used
_PolyfaceOneNormal
0x0020 | PRC_FACETESSDATA | described with 4 indices (normal,point,point,point).
_TriangleOneNormal
0x0040 P?C—F'IA‘?:ETSSS,\?ATA described with n+1 indices (normal,point,point,..., point) if
T riangleranOneorma | ppc FACETESSDATA_NORMAL_Single is set
described with 2*n indices (normal,point,... ,normal,point) if
PRC_FACETESSDATA_NORMAL_Single is not set, in which case
normal is to be interpreted as triangle normal (last normal is repeated)
0x0080 P_?C—Ff‘%ETE%SDQTA Described with n+1 indices (normal,point,point,..., point) if
- arl'ang eSUIpEONeNOr | prc FACETESSDATA_NORMAL_Single is set
Described with 2*n indices (normal,point,... ,normal,point)if
PRC_FACETESSDATA_NORMAL_Single is not set, in which case
normal is to be interpreted as triangle normal (last normal is repeated)
0x0100 | PRC_FACETESSDATA | Not used
_PolyfaceTextured
O e erextrod | This s the same as PRC_FACETESSDATA_Triangle except that
- there are texture coordinate indices between normal and point indices.
The variable number_of_texture_coordinate_indexes in
PRC_TYPE_TESS_Face specifies the number of indices.
For example, a simple triangle with one texture coordinate index is
described by
(normal,texture,point,normal,texture,point,normal,texture,point).
0x0400 | PRC_FACETESSDATA

_TriangleFanTextured

This is the same as PRC_FACETESSDATA _TriangleFan except
that there are texture coordinate indices between normal and point
indices.

The variable number_of texture coordinate indexes in

© ISO 2008 — Al rights reserved

89

PRC_TYPE_TESS_Face specifies the number of indices.

For example, a triangle fan with one texture coordinate index is
described by
(normal,texture,point,normal,texture,point,normal,texture,point).

0x0800 | PRC_FACETESSDATA | .o i the same as PRC_FACETESSDATA_TriangleStripe
_TriangleStripeTextured — i o=
except that there are texture coordinate indices between normal and
point indices.
The variable number_of _texture_coordinate_indexes in
PRC_TYPE_TESS_Face specifies the number of indices.
For example, a triangle stripe with one texture coordinate index is
described by
(normal,texture,point,normal,texture,point,...,normal,texture,point).
0x1000 | PRC_FACETESSDATA | Not used
_PolyfaceOneNormalTe
xtured
0x2000 Pﬁ%ﬁFﬁ%iLENirsn?;\I: This is the same as
;turedg PRC_FACETESSDATA_TriangleOneNormal except that there
are texture coordinate indices between normal and point indexes.
The variable number_of texture_coordinate_indexes in
PRC_TYPE_TESS_Face specifies the number of indices.
For example, a simple triangle with one texture coordinate index is
described by (normal,texture,point,texture,point,texture,point).
0x4000 | PRC_FACETESSDATA [iy i the same as
ﬁextur%d PRC_FACETESSDATA_TriangleFanOneNormal except that
there are texture coordinate indices between normal and point
indexes.
The variable number_of _texture_coordinate_indexes in
PRC_TYPE_TESS_Face specifies the number of indices.
For example, a triangle fan with one texture coordinate index is
described as follows:
(normal,texture,point,... ,normal,texture,point) if
PRC_FACETESSDATA_NORMAL_Single is not set.
(normal,texture,point,... ,texture,point) if
PRC_FACETESSDATA_NORMAL_Single is set.
0x8000 Pﬁ%ﬁFﬁ%ItEr}ri%izﬁgrA This is the same as
alrenred PRC_FACETESSDATA _TriangleStripeOneNormal except that
there are texture coordinate indices between normal and point
90 © 1SO 2008 — All rights reserved

indexes.

The variable number_of_texture_coordinate_indexes in
PRC_TYPE_TESS_Face specifies the number of indices.

For example, a triangle stripe with one texture coordinate index is
described as follows:

(normal,texture,point,... ,normal,texture,point) if
PRC_FACETESSDATA_NORMAL_Single is not set.

(normal,texture,point,... ,texture,point) if
PRC_FACETESSDATA_NORMAL_Single is set

7.8.6 PRC_TYPE_TESS_Face

7.8.6.1

General

This represents tessellation data for a face. An entity of this type only exists in a PRC File because it is
referenced by a PRC_TYPE_TESS_3D. The coordinates, normals, and indices of the triangulated data are
found in the PRC_TYPE_TESS_3D which references this entity.

The following is a description of the variables in the file:

size_of_line_attributes is the number of entries in line_attributes

Line_attributes is an array of line styles

Start_of_wire_data represents the starting index for the wire data in the array of wire_indices of the
PRC_TYPE_TESS_3D entity. Using sizes_wire, and start_of_wire_data determines where to
retrieve wire point coordinates.

Size_of_sizes_wire is the number of entries in sizes_wire

sizes_wire is an integer array of the number of indices for each wire edge of this face. The indicies
are stored in the array wire_indicies within the PRC_TYPE_TESS_3D entity containing this face.

used_entities_flag is a flag that indicates the types of triangulated entities in the array
TriangulatedData; the various bits of this flag are defined in PRC Tessellation Types; the order of
the bits in this flag correspond with the ordering of triangulation data within the TriangulateData
arrays.

start_triangulated represents the starting index for the triangulated data of this face within the array
triangulated_index_array of the PRC_TYPE_TESS_3D entity containing this face.

Size_of_TriangulatedData is the number of entries in the array TriangulatedData.

TriangulatedData is an integer array describing the tessellation data for a face. See below for a
description of the data within this array.

number_of_texture_coordinate_indexes represents the number of texture coordinate indices (see
PRC Tessellation Types).

has_vertex_colors is a flag indicating if colors are stored directly in the vertices. Either there is no
color for the vertices, or every vertex must have a color.

© IS0 2008 — All rights reserved 91

e behavior denotes the graphics behaviour, such as inheritance, for the entity in the tree owning the
face tessellation, as described in behavior_bit_field of GraphicsContent section. Note that this is
not relevant if size_of_line_attributes is 0 (meaning that there are no graphic attributes for the face).

The tessellation data for a face consists of a number of triangulations. Each triangulation is of one of the types
described in PRC Tessellation Types. The bit fields of the used_entities_flag indicate if that type of
triangularization data is present and the order of the bit fields from low to high (0 to 31) indicate the order of
data in the TriangulatedData array if such data is present.

The first entry of the TriangulatedData array indicates the number of triangles
(PRC_FACETESSDATA_Triangle); other entries will indicate either the number of triangularizations of a
specific type or the number of indices for a triangularization type.

For example, consider a face whose tessellation data contains 5 triangles, two fans of 5 and 7 indices, and 1
stripe of 11 indices. In this case,

e used_entities_flag = PRC_FACETESSDATA_Triangle & PRC_FACETESSDATA_TriangleFan &
PRC_FACETESSDATA_TriangleStripe

e start_triangulated = index into triangulated_index_array of the start of
data for this face; this would be 0 for a single face in a PRC_TYPE_TESS_3D
entity.

e TriangulatedData = (5, 2, 5, 7, 1, 11)
size_of_line_attributes can have one of following values.

e 0 if there are no graphics. In this case, all graphics are inherited from the owner of the
PRC_TYPE_TESS_3D data.

e 1ifthere is one graphic associated with the whole face tessellation data.

e 2 or higher : in this case, the number of graphics entities must be equal to the number of entities
stored in the current face. For instance, if the face contains 3 triangles, 2 fans and 7 stripes, this
number must be set to 12.

The size of a wire edge of a FaceTessData is limited to 16383 (0x3FFF) points. For wire edges, two flags
denote the drawing behaviour (see Special flags for 3DwireTessData wire tessellation.).

For example, if there are two loops having 2 and 1 wire edges, respectively: For the first loop, the first edge
would have 10 points and the second edge would have 20 points. For the second loop there would be 12
points. The array would be [10, 20 | PRC_FACETESSDATA_WIRE_IsClosing, 12 |
PRC_FACETESSDATA_WIRE_IsClosing] Note that the indices for the edge extremes are always stored.
Therefore, the 10th point of the first edge should be at the same location as the first point of the second edge.

In the cases where the tessellation type contains one normal, the number of points is combined with the flag
PRC_FACETESSDATA_NORMAL_Single. Hence the number of points is always limited to Ox3FFFFFFF
whatever the PRC tessellation type for FaceTessData.

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_TESS_Face

92 © IS0 2008 — Al rights reserved

Required Unsignedinteger Size_of _line_attributes

Required ArrayOf[Unsignedinteger] array of Line_attributes where each entry is
(Index_of_line_style+1) into the array of line
styles (see GraphicsContent).

Required Unsignedinteger Start_of_wire_data

Required Unsignedinteger Size_of_sizes_wire

Required ArrayOf[Unsignedinteger] Sizes_wire

Required Unsignedinteger Used_entities_flag

Required Unsignedinteger Start_triangulated

Required Unsignedinteger Size_of_TriangulatedData

Required ArrayOf[Unsignedinteger] TriangulatedData

Required Unsignedinteger Number_of_textured_coordinate_indexes

Required Boolean has_vertex_colors

Required VertexColors Vertex color data

Option: Unsignedinteger behavior

size_of_line_attributes

>0

7.8.6.2 Face Wire Tessellation Flags

0x4000 PRC_FACETESSDATA_WIRE_IsNotDrawn Indicates that the edge should not be
drawn (its neighbor will be drawn).

0x8000 PRC_FACETESSDATA_WIRE_IsClosing Indicates that this is the last edge of a
loop.

7.8.7 PRC_TYPE_TESS_3D_Wire

7.8.7.1 General

Tessellation for a 3D wire edge

The following is a dscription of the variables in the file:

e The ContentBaseTessData class defines the number_of_coordinates and coordinates of the
tessellation data. It also defines a flag, is_calculated, indicating whether the data was calculated
during import or comes directly from a CAD system. Data in the coordinates array is interpreted as
the x, y, and z coordinates of the 3D points in the tessellation.

e number_of_wire_indexes is the number of integers in the wire_indexes array.

© ISO 2008 — Al rights reserved

93

e wire_indexes is an array of integers which is defined below.

e has_vertex_colors is a flag indicating if colors are stored directly in the vertices. Either there is no
color for the vertices, or every vertex must have a color.

If number_of_wire_indexes is zero, the tessellation coordinates represents a single wire edge. If
number_of_wire_indexes is not zero, the array wire_indexes defines a sequence of wire edges by
specifying the number_of_indices_per_wire_edge followed by the indicies for that wire edge. The indicies
define the index into the coordinates array for the (X, y, z) of a point along the wire edge. The indices must be
a multiple of 3.

The number_of_indices_per_wire_edge is an encoded 32 bit integer containing the following:

[Flag [Number_of indicies_per_wire_edge |

The flag is the leftmost 4 bits and is interpreted using 3D Wire Tess Flags to indicate

o if the first point of this wire should be linked to the last point of the preceeding wire
(PRC_3DWIRETESSDATA_IsContinuous)

e if the last point of this wire should be linked to the first point of this wire
(PRC_3DWIRETESSDATA_IsClosing)

Required Or Option Data Type Data Description
Required Unsignedinteger PRC_type_tess_3D_wire
Required ContentBaseTessData Tessellation coordinates
Required Unsignedinteger Number_of_wire_indexes
Required ArrayOf[Integer] Wire_indexes

Required Boolean has_vertex_colors
Option: TRUE VertexColors Vertex color data

7.8.7.2 VertexColors

e is_rgba: TRUE implies the color is 4 characters (RGBA); FALSE implies the color is 3 characters
(RGB).

e is_segment_color: TRUE implies there is a color for every two points of the wire; FALSE implies
there is a color for every point of the wire.

e b_optimised: reserved for future use; it should always be false.

e color_array is a sequence of characters indicating the RGB or RGBA values for each of the vertexes
or segments in the tessellation.

The number_of_colors stored in the color_array must be calculated from the from the number of point indices

94 © IS0 2008 — Al rights reserved

e found in the wire_indexes array in the case of a PRC_TYPE_TESS_3D_Wire
e foundinthe sizes_triangulated in the case of a PRC_TYPE_TESS_Face

If is_segment_color is FALSE, there is a color for every point in the appropriagte array; otherwise, there is a
color for every segment in the array. It is important to remember that implicit points must also have a color. An
implicit point is a point that is implied in the sequence of wire points but is not stored in the file, such as when
a wire is of type PRC_3DWIRETESSDATA_IsClosing (i.e. last point connects to first point, but the first point

is not repeated in the file).

Required Or Option Data Type Data Description

Required Boolean Is_rgba

Required Boolean Is_segment_color

Required Boolean B_optimized

Option: !B_optimized ArrayOf[ColorDdata]

7.8.7.3 ColorData:
Required or Option | Data Type Data Description
Required Color Color of first vertex; is_RGBA indicates either
3 characters (FALSE) or 4 characters (TRUE)

Required ArrayOf[ColorDataRemainder] | Color of remaining vertexes

7.8.7.4 ColorDataRemainder

Required or Option

Data Type Data Description

Required

Boolean TRUE implies this entry has the same color as

the previous one

Optional:FALSE

Color Color of vertex; is_RGBA indicates either 3

characters (FALSE) or 4 characters (TRUE)

7.8.7.5 3D Wire Tess Flags

0x10000000 PRC_3DWIRETESSDATA_IsClosing Indicates that the first point is implicitly
repeated after the last one to close the wire
edge.

0x20000000 PRC_3DWIRETESSDATA_IsContinuous | Indicates that the last point of the preceding

wire should be linked with the first point of
the current one.

© ISO 2008 — Al rights reserved

95

7.8.8 PRC_TYPE_TESS Markup

7.8.8.1 General

Contains information describing the graphical behavior for the tessellation associated to a markup
(PRC_TYPE_MKP_Markup).

The tessellation of a markup uses two arrays containing the codes and the coordinates.
The codes array contains a description of the entities used in the tessellation.

The coordinates array (ContentBaseTessData) contains point coordinates as well as other floating point
values used by entities.

Each entity has at least two codes. The first code contains the entity type and the number of specific inner

codes. The second code is the number of doubles (coordinates) for this entity. These doubles are located
in the coordinates array.

e The ContentBaseTessData class defines the number_of_coordinates and coordinates of the
tessellation data. In the case of markup, the flag is_calculated, is meaningless. Data in the
coordinates array is normally interpreted as x,y,z data, but can also contain data such as the 16
elements of a matrix.

e Number _of_codes specifies the size of the code array

e Code Numbers is an integer array of code numbers for the markup entity

e Number_of_text_strings specfies the size of the string array

e Text_strings is an array that contains the text strings for any text entities contained current markup
object.

e Tessellation label is the name of the corresponding PRC_TYPE_MKP_Markup. Behavior is the bit
field describes the graphical behavior of the tessellation.

Required Data Type Data Description

Required Unsignedinteger PRC_TYPE_TESS_Markup
Required ContentBaseTessData Tessellation coordinates

Required Unsignedinteger Number_of_codes

Required ArrayOf[Unsignedinteger] Code Numbers associated with the

current markup object

Required Unsignedinteger Number_of_text_strings
Required ArrayOf[String] Text_strings

Required String Tessellation label
Required Character behavior

96 © IS0 2008 — Al rights reserved

7.8.8.2 Markup Flags

Special flags for various markup conditions. These flags are used to extract the corresponding
information from the integer code array as explained in Markup tessellation codes.

0x08000000 | PRC_MARKUP_IsMatrix Bit to denote that the current markup
entity is a matrix

0x04000000 | PRC_MARKUP_IsExtraData Bit to denote that the current markup
entity is extra data (it is neither a
matrix nor a polyline).

OXFFFFF PRC_MARKUP_IntegerMask Integer mask to retrieve the number
of inner codes for a given entity

0x3E00000 | PRC_MARKUP_ExtraDataType | Mask to retrieve the integer type of
the markup entity

7.8.8.3 Markup Tessellation Behavior

Special flags for handling the graphical behavior of the tessellation associated with the markup object.
these flags are represented by bits in the variable Behavior.

0x01 | PRC_MARKUP_IsHidden The tessellation is hidden

0x02 PRC_MARKUP_HasFrame The tessellation has a frame

0x04 | PRC_MARKUP_IsNotModifiable | tessellation is given and should not be modified

0x08 | PRC_MARKUP_IsZoomable tessellation has zoom capability
0x10 | PRC_MARKUP_IsOnTop The tessellation is on top of the geometry
0x20 | PRC_MARKUP_IsFlipable The text tessellation can be flipped to always be readable

on screen. This value is currently unused.

7.8.8.4 Description of the first Markup code.

There are three masks needed to identify the entity type.
PRC_MARKUP_IsMatrix

PRC_MARKUP_IsExtraData
PRC_MARKUP_ExtraDataType

If none of these masks is set, the entity is a polyline.
PRC_MARKUP_IsMatrix should not be set if PRC_MARKUP_|sExtraData.

If PRC_MARKUP_IsExtraData is set then PRC_MARKUP_ExtraDataType mask should be used
to retrieve the type of markup entity.

© IS0 2008 — All rights reserved 97

7.8.8.5

7.8.8.6

Description of the second Markup code.

The second code is the number of doubles needed by the entity.
The following table shows, for each defined entity, the extra data type, the number of inner codes ,
and the number doubles in the coordinate array.

The extra data type is set using the PRC_MARKUP_ExtraDataType mask.

Table of entities

In the table below, [1] indicates entity types which are used to define blocks. The notion of block is
discussed in next section. [2] indicates entity modes as discussed in further section as well.

Entity Extra Data Type | Number of inner codes Number of Doubles

Polyline None 0 Points*3

Matrix mode [1] None 0 or number of entities in the | 0 or number of doubles used in
block the block (at least 16)

Pattern @) 3+number of loops Points in loop*3

Picture 1 1 0

Triangles 2 0 Number triangle*9

Quads 3 0 Number of quads*12

Face view 6 0 or number of entities in the | 0 or number of doubles used in

model[1] block the block

Frame draw 7 0 or number of entities inthe | 0 or number of doubles used in

model[1] block the block

Fixed Size 8 0 or number of entities in the | 0 or number of doubles used in

Model[1] block the block

Symbol 9 1 3

Cylinder 10 0 3

Color 11 1 0

Line stipple[2] 12 0 10

Font 13 1 0

Text 14 1 2

Points 15 0 Number Points*3

Polygon 16 0 Number points*3

Linewidth[2] 17 0 Oor1l

7.8.8.7

7.8.8.7.1

7.8.8.7.2

98

Block and entity modes

Description of a block.

Blocks are defined by face view, frame draw, fixed size and matrix modes (described below).

Each block is surrounded by the corresponding entity. At the start of a block, the entity modifies the
state, which may include the line style, or current transformation matrix. The state is restored at the
end of the block.

For example, a matrix mode starts by defining a matrix that will multiply the current transformation

matrix, draws some entities, and ends with another matrix mode entity indicating the end of the
mode.

Description of modes used in block definitions.

Because the face view, frame draw, fixed size, and matrix modes start with the corresponding entity
and end when the same entity is encountered, they define blocks.

© ISO 2008 — All rights reserved

The starting entity has a non-zero number of inner codes. It represents the number of codes until the
end of the block, not counting the two mandatory codes for each entity. The same rule applies to the
doubles. The ending entity has no inner codes and no doubles.

The number of inner codes makes it possible to skip a block when reading a tessellation. To treat the
content of a block, use the numbers as shown in the following table.

Mode Number of inner Number of doubles
codes

Face view (starting) number of entities number of doubles in the
in the block block (at least 3)

Face view (ending) 0 0

Frame draw(starting) number of entities number of doubles in the
in the block block (at least 3)

Frame draw(ending) 0 0

Fixed size(starting) number of entities number of doubles in the
in the block block (at least 3)

Fixed size(ending) 0 0

Matrix(starting) number of entities number of doubles in the
in the block block (at least 16)

Matrix(ending) 0 0

The following example shows the codes for defining a matrix mode and then 3 points in the block.
(0x08000000 + 3) (begin matrix block; 3 entities to follow), 16 + 3*3 (number of doubles in block)
(0x04000000 + 15) (first point) , 3 (it uses 3 doubles)

(0x04000000 + 15) (second point) , 3 (it uses 3 doubles)
(0x04000000 + 15) (third point) , 3 (it uses 3 doubles)

(0x08000000) (end matrix block), 0 (matrix ending; no double)

7.8.8.7.3 Description of entity modes.
The line stipple and line width modes operate identically to the modes used in block definitions, but the
numbers correspond only to the entity and not to the block.

For the line stipple mode, the number of inner codes denotes the start (1) or the end (0) of the block.
For the line width mode, the number of doubles denotes the start (1) or the end (0) of the block.

7.8.8.8 Entity description

7.8.8.8.1 General

For each entity, the following tables show the mandatory codes and the inner codes, as well as the
doubles needed by the entity.

7.8.8.8.2 Polyline

There is an (x,y,z) triplet for each point of the polyline.

Codes Doubles
0 X
Number of points*3 | Y

z

© IS0 2008 — Al rights reserved 99

7.8.8.8.3 Triangles

A list of triangles. There is an (x,y,z) triplet for each point of the triangle list.

Codes Doubles
0 X
Number of points*9 | Y

z

7.8.8.8.4 Quads

A list of quads. There is an (x,y,z) triplet for each point of the quad list.

Codes Doubles
0 X
Number of points*12 Y

y4

7.8.8.8.,5 Polygon

There is an (x,y,z) triplet for each point of the polygon.

Codes Doubles
0 X
Number of points*3 | Y

Y4

7.8.8.8.6 Points

A list of points. There is a (x,y,z) triplet for each point.

Codes Doubles
0 X
Number of points*3 | Y

z

7.8.8.8.7 Face view mode

In this mode, all the drawing entities are parallel to the screen (billboard). The point given in the
doubles corresponds to the origin of the new coordinate system in which entries are drawn parallel to

the screen.
Codes Doubles
0 or number of entities in | X
block
0 or number of doubles Y
in block
z

7.8.8.8.8 Frame draw mode
In this mode, all the drawing entities are given in 2-dimensional space. The point given in the doubles

corresponds to a 3D point projected onto the screen, providing the origin of the 2-dimensional
coordinate system in which to draw (viewport).

100 © IS0 2008 — Al rights reserved

Codes Doubles
0 or number of entities | X

in block
0 or number of doubles | Y
in block

7.8.8.8.9 Fixed size mode

In this mode, all the drawing entities are drawn at a fixed size, independent of zoom. The point given
in the doubles corresponds to the origin of the new coordinate system in which to draw at fixed size.

Codes Doubles
0 or number of entities X
in block
0 or number of doubles Y
in block
Y4

7.8.8.8.10 Matrix mode

In this mode, all the drawing entities are transformed by the current transformation matrix multiplied
by the matrix given in the doubles. At the end of the mode, the transformation matrix that was
previously active is restored.

Codes Doubles

0 or number of entities A(1,1)

in block

0 or number of doubles A(2,1)

in block
A1)
A(4,1)
A(L,1)
A(L,2)
A(L,3)
A(4,3)
A(4,4)

7.8.8.8.11 Symbol

The point given in the doubles corresponds to the position of the symbol in 3D.
The pattern identifier is an index into the picture array stored in FileStructurelnternalGlobalData
The symbol is a VPicturePattern type.

Codes Doubles
1 X
1 Y
Pattern identifier Y4

7.8.8.8.12 Color

This entity defines a color that will be effective until a new one is defined.
The color identifier is an index into the color array stored in FileStructurelnternalGlobalData.

© IS0 2008 — All rights reserved 101

Codes Doubles
1
0
Color identifier

7.8.8.8.13 Line style mode

This entity defines the line style that will be effective inside the block.
The first code is 1 for beginning the block and 0 for ending.

The line style identifier is an index into the line stype array store in
FileStructurelnternalGlobalData.

Codes Doubles
Oorl

0

Line Style identifier

7.8.8.8.14 Font

This entity defines the font used for the next Text entity.
The font identifier is and index into the font array stored in FileStructurelnternalGlobalData.

Codes Doubles
1
0
Font identifier

7.8.8.8.15 Text

This entity defines text to be rendered using the current font (defined by the Font entity).
The text index refers to the text number in the string array.
W and H correspond to the width and height, respectively, of the text in real display coordinates.

Codes Doubles
1 W

2 H

Text Index

7.8.8.8.16 Line width mode

This entity defines the line width that will be effective inside the block.
The number of doubles is 1 for the beginning of the block and 0 for the ending of the block.
W is the line width to use in the block. It is not used when ending the block.

Codes Doubles
0 W
Oorl

102

© ISO 2008 — All rights reserved

7.8.8.8.17 Cylinder

The cylinder is positioned by a matrix mode, oriented with the z-axis, with the base at Z = 0 and the
top at Z = Height.

Codes Doubles

0 Base radius

3 Top radius
Height

7.8.8.8.18 Image

This entity defines an image positioned at the current position.
The picture identifier is an index into the picture array stored in the FileStructurelnternalGlobalData
section of the file..

Codes Doubles
1
0
Picture identifier

7.8.8.8.19 Pattern

The pattern identifier is an index into the fill pattern array stored in the
FileStructurelnternalGlobalData.section of the file.

The filled mode is one of the following values: 0 = OR, 1 = AND, 2 = XOR.
The behavior is a bit field, with the Ox1 bit indicating whether to ignore the view transformation. If it is

true, the pattern is not transformed by the current view transformation. The other bits should be set to
zero.There is an (x,y,z) triplet for each point in the loops, and they are listed in sequential order.

Codes Doubles
3 + number of loops X
Number of points in loop * 3 Y
Pattern identifier z

Fill mode

Behavior

Number of points for loop 1

Number of points for loop n

7.8.9 PRC_TYPE_TESS_3D_COMPRESSED

A highly compressed tessellation which is a compact approximation of a PRC_TYPE_TESS_3D object.The
starting point is a mesh described with points, normals and triangles, with implicit topology. Each triangle has
3 normals (one for each point). The triangle normal is determined by cross-product on its vertices, oriented in
conjunction with one of its 3 normals (it is assumed that the calculation gives the same sign whatever the
normal). A tolerance for approximation is also given as input. All triangles are supposed to be not-degenerated
relative to this tolerance : they must have edge length and height greater than the tolerance.

The input non-compressed mesh is duplicated into a working structure which will be traversed as described
below. At each step, approximation on points, normals and textures occur and the results of these
approximations are reinjected into this working structure and used in further calculations until traversal is
completed, producing an output compressed mesh. The approximation algorithms on points and normals are
described in the following sections. The code corresponding to the basic functions used in those algorithms is
given as pseudo code in the Section 9.

© IS0 2008 — Al rights reserved 103

7.8.9.1 Mesh Traversal

The input mesh is traversed as follows (see figure 1):

T

WS

Figuee 1

Let TO [VO V1 V2] be the first triangle and [VO V1] be the first edge of TO (this edge is
arbitrarily chosen). Then, T1 is the left neighbor of TO and the edge between V1 and V2 is
the first edge of T1. T3 is the left neighbor of T1 and the edge between V1 and V3 is the first
edge of T3. T2 is the right neighbor of T1 and the edge between V2 and V3 is the first edge
of T2, and so on... Left / right characteristic for the neighbor is determined using the triangle
normal.

To traverse the mesh structure, 3 cases are considered.

«If the current triangle has only one neighbor which is not treated, this
neighbor will be treated just after the current triangle.

«If the current triangle has both a left and a right neighbors which are not
treated, the left triangle will be treated just after the current triangle. The right tri-
angle is put in a "last in first out" stack.

«If the current triangle has no neighbor which are not treated, the last triangle
in the stack is treated.

At each stage, the stack is updated accordingly.

7.8.9.2 Mesh points and triangles:

The following table contains a description of the variables used while computing the
compressed point mesh.

Name Type Description

Tolerance Double 3D point tolerance
Point_array ArrayOffinteger] Array of points
Edge_status_array ArrayOf[Character] Flags to describe a Triangle

104 © 1SO 2008 — All rights reserved

7.8.9.3

neighbor
Point_reference_array | ArrayOffinteger] Point relative reference
Point_is_a_reference ArrayOf[Boolean] Indicates whether a point is a
reference

point_array describes the vertex coordinates of each point. Coordinates are stored only if
necessary, if the point has not been encountered before. As denoted in previous section, the first
triangle [VO V1 V2] of a mesh, its first edge [VO V1] and first point VO are chosen arbitrarily. This first
triangle is stored following way : For VO, its coordinates X,Y,Z are divided by the tolerance the
nearest 3 integers are stored as VOapp and VO is updated in the working structure (the coordinates
of VO are replaced by their truncated values). This assumes that those coordinates divided by
tolerance do not overflow a 32 bit integer. This is a condition at every step of the compression
process. For V1, DV1 = V1-VO is computed and the result is compressed and stored like the first
point as DV1app; then V1 is updated in the working structure. For V2 : DV2 = V2 - (VO+V1) / 2 is
computed, compressed and stored the same way as DV2app; then V2 is updated in the working
structure. For subsequent triangles, they are always entered through an edge as explained in
previous section. Let [VO V1 V2] be the current triangle to treat, [VO V1] be the entering edge and Tn
[VO V1 V3] the already-treated triangle which is the neighbor of the current towards [VO V1]. If V2 is
not a reference as denoted in point_is_a_reference array, V2 is stored following way : A coordinate
system is defined using Tn. Origin O = (V1 + VO0) * 0.5. Others axis are defined below.

> e e

X = (Vl—VO)/HVl—VOH (1)

— — 2 2 — > 7 > > —>

Zigmp = V3-0 and Z = Zigmp A X/IIX] z=z/1Zl (2
> > = 3 =

Y = Z/|Z| A X/IIX] (3)

In the equation (1), VO and V1 are taken so that VO has a treatement index less than V1 (which
means that VO has been treated before V1). A particular case occurs if the Z axis

or Y are null (length less than FLT_EPSILON). In these cases, they are computed by the function
MakeOrthoRep() described in annex, using the unit axis X as input.

Then V2 is expressed in this coordinate system, compressed the same way as before and updated in
the working structure. Then the next triangle is traversed as explained above.

edge_status_array describes triangles’ neighbors. Each triangle has a flag which is initialized to 0
and then set to:

¢ |= 0x1 if Triangle has a Right Neighbor

« |= 0x2 if Triangle has a Left Neighbor

point_reference_array is used to store treatment indexes of points which have been stored by
processing a previous triangle.

point_is_a_reference indicates if a point has been already treated.

Mesh Normal Description

The following table contains a description of the variables used while computing the compressed
normal mesh.

Name Type Description
Normal_binary_data ArrayOf[Boolean] Information used to compute
normal

© IS0 2008 — Al rights reserved 105

Normal_angle_array ArrayOf[Shortinteger] Spherical coordinates of the
normal

Is_face_planar ArrayOf[Boolean] Is associated face planar

normal_binary_data is a bit field used to store information types on normals.

e Bithas multiple normal is true if the current vertex has many normals. This bit is added only if
the current vertex is encountered for the first time.

e Bittriangle normal reversed is true if the computed triangle normal used to define a local
coordinate system must be reversed. See next paragraph for determination of the local
coordinate system.

e Bitis_a reference is true if the current normal is stored as a reference on another normal of the
current vertex. In this case, reference_index denotes the value of the reference. It is stored in
normal_binary_data on a variable number of bit : number_of bits. Number_of bits is computed
using number_of stored normals : number of already actually stored normals (without
references) on the current vertex.

e Bitx is reversed is true if the x-coordinate of the normal in the local coordinate system is
reversed. (true if x is reversed). Same for y_is_reversed.

Normal_angle_array describe spherical coordinates of normals (normals are unit vectors). Values
stored are comprised between 0 and PI/ 2. For each triangle, a local coordinate system is computed
and used to calculate these two angles. Finally, these two angles are compressed and temporarily
stored in a short. The compressed value is computed using normal_angle number_of bits. This
number must be less than 16, (default value is 10) to be stored in an array of shorts.

Is_face_planar is true if corresponding face is planar. In this case, only one normal is stored for all
triangles of this face. It is stored when treating the first vertex of the first triangle of this face.

7.8.9.4 Mesh Normal Construction

For each triangle, 3 normals are computed and stored. The first one corresponds to the vertex
that has the min treatement index in the first edge. The second one corresponds to the max
treatement index in the first edge. Then, a local coordinate system X,Yand Z is defined from the
triangles vertices in the working structure.

BN
SecondVertex— firdVertex

A 5 _ _ThirdVetex— firgVertex
n = - v =

HS&Dmu’Vm‘e(— firgVerteq H ThirdVertex— firfrVarsJ"
\ﬁ - ThirdVertex —SecondVertex

HThirdVertex —SecondVertexH

— — T - — T
01 = “(Vl,VZ)‘ _E 62 = “(V’g’,—Vl)‘ _E 03 = ‘(—VZ,—VS)‘ -z

3_32 3 - =

1f(61 < 02)and(61<63) =X = V3 Z = (V1AV2)

3_32 > —>
Elself(62<63)=> X =V3 Z = -V3aV1l

N — N —
Else=X=—V2 Z= (VZ/\VS

Z is reversed to have a scalar product positive or null with the current vertex normal. Note that
this coordinate system is the same for the 3 vertices of the triangle as a consequence of the
primary condition on triangle normal. The result is stored in triangle_normal_reversed.

106 © IS0 2008 — Al rights reserved

A particular case occurs if the Z axis or Y are null (length less than FLT_EPSILON). In these
cases, they are computed by the function MakeOrthoRep() described in annex, using the unit
axis X as input. For each vertex normal, the angles in normal_angle_array are computed as de-
scribed below (n denotes the triangle normal) :

¥

S o : >
¢ = asin(fn - Z) with Il

.Z e 0, 1],¢e[o,§]

| =
ol Sl iy A with S AR RS ¥ e o, 1]
H=d] | ||

and 8= [D, =

Spherical angles Theta and Phi are then compressed and stored the same way as follows (same formula
for Phi) :

_ ‘9‘ % (ZnormaIAngIeNumberOfBits_1)

)

short n
2

These values are then written in unsigned short integers on 16 bits with a cast. Then, the nearest
unsigned short values to these angles are stored in normal_angle_array.

0 % E/(2normaIAngIeNumberOfBits
2

1
short -1-10l> 2 = Ognort = Ognort *1

For each vertex in each triangle, Theta and then Phi are added in normal_angle_array if the normal is
not a reference. The pseudo code below describes how normal_binary_data and normal_angle_array
are filled.

If (number_of_stored_normal == 0 || thas_multiple_normal)
Add has_multiple_normal in normal_binary_data
Add triangle_normal_reversed in normal_binary_data
Add x_is_reversed in normal_binary_data
Add y_is_reversed in normal_binary_data

Add Angles in normal_angle_array

© IS0 2008 — All rights reserved 107

else

Add is_a_reference in normal_binary_data
if (is_a_reference)

for(i=0; i < number_of_stored_normal; i++)
Add reference_index&(1<<i) in normal_binary_data
}

else

{

Add triangle_normal_reversed in normal_binary_data
Add x_is_reversed in normal_binary_data
Add y_is_reversed in normal_binary_data
Add Angles in normal_angle_array

}

After the compressed normal calculation, a compressed normal is computed and re-injected in the
working structure as follow.

Sshort * 2

e""”"f‘ JrormalAngleNumberOfBits

T

7
behors > 7
¢C°M‘P - JnormalAngleNumberOfBits |
Homs s . s . B >
Beomp = uost_awmp_)com_@mmPJ x X sm[Smmp,luos(rbmwp) %Y smt¢mmp) X

The cos and sinus functions are computed using a taylor expansion with 4 terms and the following
expression.

if(a>m/4) =>sin(a) = cos(n/2 — a) cos(a) = sin(n/2 —a)
7.8.9.5 Mesh texture structure

The following table contains a description of the variables used for textures storage. This structure is
used to describe the textures’ UV parameters.

Description

False if there is at least one face
without texture

Does corresponding face have texture
Information to retrieve UV texture
parameters.

Name Type
All_face_has_texture Boolean

Face has_texture ArrayOf[Boolean]
Texture_data CompressedTextureParameter

108 © IS0 2008 — Al rights reserved

7.8.9.6

7.8.9.7

The combination of All_face_has_texture and Face_has_texture determines whether a face has
textures. Texture_data contains information to retrieve UV textures' parameters. See
CompressedTextureParameter for more details.

Mesh Attribute structure

The following table contains a description of the variables used to contain mesh attribute data.

Name Type Description

Is_point_color Boolean TRUE if there is at least one
face with point color

Is_point_color_on_face ArrayOf[Boolean] TRUE if corresponding face
has point color

Point_color_array ArrayOf[Integer] RGB or RGBA

Is_multiple_attribute Boolean TRUE if there is at least one
face with multiple attributes

Line_attribute_array ArrayOf[Short] Indexes in the graphics array

point_color_array describes colors on vertices for each triangle. For each triangle vertex with point
color, 5 characters are stored. The first character describe if the vertex has got RGB or RGBA
components. Then 4 components are used to stored R, G, B, and alpha.

line_attribute_array describe indexes in a graphic array. If a face contains multiple attributes, one
index per triangle is added in line_attribute_array. Otherwise, one index per face is added, when
encountering the first triangle of this face.

Description of the data written to the file

The following is a description of the data in the file:

e is_calculated indicates whether the tessellation has been calculated during the import
or has been read directly from a native file.
e has_faces is true if the entity is built using geometrical faces.
e tolerance represents the tolerance of the approximation of the original tessellation.
origin_array contains three floating point coordinates that describe the bounding
boxcenter of the compressed 3D tessellation data.

e points_array contains the array of vertex points.

e edge_status_array for each triangle, used to describe the triangles neighbors.

e point_is_referenced_array_size size of the reference array.

e point_is_referenced_array indicates whether a point is a reference.

e number_of_referenced_points size of the point reference array.

e point_reference_array relative point references.

e triangle_face_array represents, for each triangle, the index of the face to which it belongs.

e character_array is calculated as shown below.

e character_array_compressed is an integer array obtained by the Huffman algorithm, with 6
bits in character_array.

e must_recalculate_normals and crease_angle are described in 3D_TESS_FACE.

e number_implicit_normal is reserved for future use.

e normal_is_reversed is reserved for future use.

e normal_binary_data information used to compute normal.

e normal_angle_array spherical coordinates.

e normal_angle_number_of_bits is the number of bits used to approximate the triangles

normals. It must be lower than 16 and should be set to 10 bits to ensure good

© IS0 2008 — Al rights reserved 109

performance.
normal_angle_array is an unsigned short array containing values less than (1 <<
normal_angle_number_of_bit) - 1). This array is optionally compressed with a Huffman
algorithm using normal_angle_number_of_bit bits.
is_normal_angle_array_compressed indicates whether normal_angle_array is
compressed.
normal_angle_array_compressed is integer array obtained by the Huffman algorithm
on normal_angle_array.
face_number is derived from the maximum value in triangle_face_array.
is_face_planar is true if the face is planar. In this case, only one normal per face
is stored.
is_point_color is true if at least one face has vertices with colors (RGB or RGBA).
is_point_color_on_face is true if the corresponding face has vertices with colors (RGB or
RGBA).
point_color_array contains an RGB or RGBA component compressed using a Huffman
algorithm with 8 bits.
is_multiple_line_attribute indicates if there is at least one face with multiple line
attributes.
is_multiple_line_attribute_on_face is true if the face has multiple line attributes. If there is one
line attribute on the face, one graphic referenced in line_attributes_array is associated with the
face. Otherwise, the number of graphics referenced in line_attributes_array is equal to the
number of triangles in the face .
no_texture is true if there is no texture.
texture_data. See corresponding chapter.
all_faces_have_texture is true if all faces have a texture.
face_has_texture is a boolean array. It indicates which faces have texure when no_texture is
true and all_faces_have_texture is false.
has_behaviours is true if special graphics behaviors or inheritances exist on faces or
triangles. See 3D_TESS_FACE for more information.

. behaviours_array represents the behavior for each face.

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_TESS_3D_COMPRESSED

Required Boolean Is_calculated

Required Boolean Has_faces

Required Boolean Tolerance

Required ArrayOf[FloatAsBytes] Origin_Array
The data is compressed as follows:
FloatAsBytes(Origin_Array[i]) fori=0, 1, 2
See Chapter FloatAsBytes

Required CompressedintegerArray Poaint_array

Required CharacterArray Edge_status_array
(2 bits per character only)

Required CompressedindiceArray Triangle_face_array

110 © 1SO 2008 — All rights reserved

Required

Unsignedinteger

Reference array size

Required

ArrayOf[Boolean]

Points_is_reference_array

Required

CompressedIndiceArray

Point_reference_array

CompressedindiceArray (see
CompressedindiceArray) invokes
WriteCharacterArray (see WriteCharacterArray); in
this case, the boolean value which indicates whether
the character array is compressed is not stored. Its
value is implicit and set to
number_of_reference_points=>3

Required

Boolean

Must_recalculate_normals

Option:TRUE

ArrayOf[Boolean]

normal_is_reversed

The number of normals is implicit, depending of the
number of triangles and faces. Vertices have always
as many normals as number of faces to which they
belong.

Option:TRUE

Double

Crease_angle

Option:TRUE

Character

Normal recalculation flags (not used; should be zero)

Option:FALSE

Character

Normal_angle_number_of_bits

Option:FALSE

Unsignedinteger

Normal_binary_data_size

Option:FALSE ArrayOf[Boolean] Normal_binary_data
Option:FALSE ShortArray Normal_angle_array
(size 16 bits)
Option:FALSE ArrayOf[Boolean] Is_face_planar
Required Boolean Is_point_color
Option:TRUE ArrayOf[Boolean] Is_point_color_on_face
Option:TRUE CharacterArray Point_color_array
(size 8 Bits)
Required Boolean Is_multiple_line_attribute
Option:TRUE ArrayOf[Boolean] Is_multiple_line_attribute_on_face
Required ShortArray Line_attribute_array

(size 16 bits)

© 1SO 2008 — All rights reserved

111

Required

Boolean

No_texture

Option:FALSE

CompressedTexturePara
meter

Texture_data

Option:FALSE Boolean All_faces_have_texture
Option: ArrayOf[Boolean] Face_has_texture
('No_texture)&&
('All_faces_have_text
ure)
Required Boolean Has_behaviors
Option:TRUE CharacterArray Behaviours_array
(size 8 Bits)
7.8.9.8 CompressedTextureParameter

The following table contains a description of the variables used to store UV textures’ parameters.

e binary_texture_data represents a bit field. During mesh traversal, if the current vertex has a
texture, a bit texture_is_reference is set in this array.This bit is true if the same UV parameter has
already been stored during mesh traversal for the same vertex. In this case the reference index
is stored in reference_array. Otherwise, this bit is set to false and UV parameters are stored in
Texture_parameters.

e reference_array is used to reference UV parameters. The references on UV parameters are
done per vertex. A UV parameter for the current vertex is referenced only if the same UV
parameter has already been stored for the same vertex during the treatment of another triangle.
This treatment is performed during mesh traversal, the same way as normals treatment.

e texture_parameters_tolerance is reserved for future use and should be set to zero.

e texture_parameters is an array of float which contains UV textures‘ coordinates.This array is
filled during mesh traversal as well.

Required or Option Data Type Data Description
Required BinaryTextureData binary_texture_data
Required Unsignedinteger reference_array_size
Required ArrayOf[UnsignedintegerWithVaria | reference_array
bleBitNumber]
Required Double texture_parameters_tolerance reserved for
future use. Should be set to 0.
Required Unsignedinteger texture_parameters_size
112 © 1SO 2008 — All rights reserved

Required ArrayOf[FloatAsBytes] texture_parameters

7.8.9.9 BinaryTextureData

BinaryTextureData represents a bit field. It indicates during mesh traversal whether UV coordinates are
referenced. (See previous chapter for more details). Then last_integer_used_bit_number bits are added to
this array so that Texture_binary_data_size becomes a multiple of 32. Consequently, 0 <=
last_integer_used_bit_number < 32. Then the unsigned integer array is written byte by byte : each
unsigned integer leads to 4 bytes obtained from MakePortable32BitsUnsigned. (see chapter
MakePortable32BitsUnsigned) ;

Required or Option | Data Type Data Description
Required Unsignedinteger Texture_binary_data_size / 32
Required ArrayOf[bits(8)] Texture_binary_data.

This size array is equal to
Texture_binary_data_size / 4.

Required Unsignedinteger last_integer_used_bit_number

7.9 Topology

7.9.1 Entity Types

Type Name Type Value Referenceable
PRC_TYPE_TOPO PRC_TYPE_ROOT + 140
PRC_TYPE_TOPO_Context PRC_TYPE_TOPO + 1
PRC_TYPE_TOPO_ltem PRC_TYPE_TOPO + 2
PRC_TYPE_TOPO_MultipleVertex PRC_TYPE_TOPO + 3 nyi
PRC_TYPE_TOPO_UniqueVertex PRC_TYPE_TOPO + 4 nyi
PRC_TYPE_TOPO_WireEdge PRC_TYPE_TOPO +5 nyi
PRC_TYPE_TOPO_Edge PRC_TYPE_TOPO + 6 nyi
PRC_TYPE_TOPO_CoEdge PRC_TYPE_TOPO + 7
PRC_TYPE_TOPO_Loop PRC_TYPE_TOPO + 8 nyi
PRC_TYPE_TOPO_Face PRC_TYPE_TOPO + 9 yes
PRC_TYPE_TOPO_Shell PRC_TYPE_TOPO + 10 nyi

© IS0 2008 — All rights reserved 113

PRC_TYPE_TOPO_Connex PRC_TYPE_TOPO + 11 | nyi

PRC_TYPE_TOPO_Body PRC_TYPE_TOPO + 12
PRC_TYPE_TOPO_SingelWireBody PRC_TYPE_TOPO +1 3
PRC_TYPE_TOPO_BrepData PRC_TYPE_TOPO + 14

PRC_TYPE_TOPO_SingleWireBodyCompress | PRC_TYPE_TOPO + 15

PRC_TYPE_TOPO_BrepDataCompress PRC_TYPE_TOPO + 16

PRC_TYPE_TOPO_W!IreBody PRC_TYPE_TOPO + 17

7.9.2 PRC_TYPE_TOPO

Abstract base class for topology.

7.9.3 PRC_TYPE_TOPO_Context

A topological context is a self-contained set of geometry and topology. Every geometrical and topological
entity belongs to a single topological context. A topological context contains topological bodies represented as
entry elements that point to topological items and geometry.

granularity represents the minimal size of an edge. This is a non-dimensional value.

tolerance represents the global base tolerance used in the context for topological elements. This is a non-
dimensional value and can be superseded by looser local tolerances for particular topological elements. See
Section 5.7.

smallest_thickness represents the smallest face thickness. It is used for loop algorithms, and its default
value is 100 * granularity.

scale represents an optional scale that can be used to interpret the context data. This scale accommodates
the different ranges of values of various CAD systems. The preceding values * scale yield dimensional values
to be interpreted with the unit. For example, granularity * scale is dimensional granularity in part units.

The behavior field defines the behavior of PRC_TYPE_TOPO_BrepData bodies. It is a character of bits
which define

e The order of outer loops within the list of loops on a face.

e Whether UV curves are clamped to the parameter domain boundaries for periodic surfaces or can
extend past the boundary.

e Whether 3D edge curves (and faces) on closed or periodic surfaces are split along the seam or not.

The following table defines the bit values and behavior for this field:

Value Type Name Type Description

0x0001 PRC_CONTEXT_OuterLoopsFirst Outer loops are first in the list of
loops on a face.

114 © 1SO 2008 — All rights reserved

0x0002 | PRC_CONTEXT_NoClamp

UV curves can go beyond the
domain of the bearing surface; this
is used for interpreting UV curves
on periodic-surfaces.

0x0004 | PRC_CONTEXT_NoSplit

3d edge curves on closed or
periodic surfaces are allowed to
cross the seam of the surface.

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_TYPO_Context

Required ContentPRCBase

Required Character behavior

Required Double grandularity

Required Double tolerance

Required Boolean TRUE if smallest face thickness
is present else FALSE

OPTION: TRUE Double Smallest face thickness

Required Boolean TRUE if the scale factor is
present; else FALSE

OPTION: TRUE Double Scale

Required Unsignedinteger Number of bodies

Required '[APrF:?Zy_(')I']\C(PE_TOPO_Body] Array of bodies

7.9.4 PRC_TYPE_TOPO_ltem

Abstract root type for any topological entity (body or single item)

7.9.5 PRC_TYPE_TOPO_MultipleVertex

This represents a vertex whose position is the average of all edges' extremity positions which end at that
vertex, that is,

© IS0 2008 — All rights reserved 115

Vertex_position = (points_for_vertex[0] + ... + point_for_vertex[number_of_points]) / number_of_points;

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_TOPO_MultipleVertex

Required BaseTopology Common topology data (name,
attributes, CAD identifier)

Required Unsignedinteger Number of points

Required ArrayOf [Vector3d] Array of points for vertex

7.9.6 PRC_TYPE_TOPO_UniqueVertex

This represents a vertex whose position is specified by a 3D absolute postion and a tolerance. By default, the
tolerance is the same as the tolerance of the topological context, but it can be over-ridden by a local one. The
optional tolerance must be either 0.0 or greater than the tolerance of the topological context of the vertex.

The tolerance is used to define a sphere around the vertex within which the vertex may lie. It is used to
determine if a position is the same (within tolerance) as this vertex. See Section 5.7.

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_TOPO_UniqueVetex

Required BaseTopology Common topology data (name,
attributes, CAD identifier)

Required Vector3d Position of vertex

Required Bit TRUE if there is an associated
tolerance; else FALSE

OPTION: TRUE Double tolerance

116 © 1SO 2008 — All rights reserved

7.9.7 PRC_TYPE_TOPO_WireEdge
A WireEdge may belong to either a wire body or single wire body. It is not bound by vertices.

The geometry of an wire edge is a 3D curve which has a optional trim interval to limit the geometric definition
of the curve. The sense of the WireEdge is the same as the underlying curve.

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_TOPO_WireEdge

3D curve defining the wire
edge and an optional interval
to restrict the wire edge to a
subset of the curve.

Required ContentWireEdge

7.9.8 PRC_TYPE_TOPO_Edge

This class represents an edge which is a bounded segment of a curve where the segment is not coincident or
self-intersecting except possibly at the end points of the edge. The geometry of an edge is provided by a wire
edge which has an optional trim interval to limit the geometric definition of the curve. The sense of the edge is
the same as the sense of the wire edge which is the same as the sense of the underlying curve.

An optional tolerance may be provided which is either zero or greater than the tolerance of the topological
context the edge lies in. The tolerance is used to define a pipe centered on the edge within which the edge
may lie. It is used to determine if a position lies on (within tolerance of) the edge. See Section 5.7.

A start and end vertex, of type PTR_TYPE_TOPO_UniqueVertex or PTR_TYPE_TOP_MultipleVertex,
represent the start and end positions on the edge. The vertices and curve trim interval are related by the
tolerances associated with the vertex and edge

Distance(Vertex, Edge_end)<= Vertex.Tolerance() + Edge.Tolerance()

Required or Option Data Type Data Description
Required Unsignedinteger PRC_TYPE_TOPO_Edge
Requried ContentWireEdge Curve providing the geometric

definition of the edge along
with trimming information

Required PtrTopology Start vertex

Required PtrTopology End vertex

© IS0 2008 — All rights reserved 117

Required Boolean Has tolerance

OPTION: TRUE Double Tolerance

7.9.9 PRC_TYPE_TOPO_CoEdge

A coedge represents the usage of an edge within a loop. The usage specifies the orientation of the coedge
with respect to the edge:

e 0 Opposite direction
o 1 Same direction
o« 2 Unknown

Normally, the orientation will be in the opposite or same direction. If the orientation is set to unknown, then
PRC_CONTEXT_OuterLoopsFirst must be set to TRUE to assist in the computation of the proper orientation.

A coedge may have a UV curve which may be NULL or of type PRC_TYPE_CRV_NURBS. The UV curve
maps R* (the interval of the UV curve) to R® (the domain space of the surface defining the face the loop of
coedges lie in). As with an edge, the UV curve has an orientation (opposite, same, unknown) with respect to
the orientation of the coedge within the loop.

If orientation_with_loop is equal to orientation_uv_with_loop, the 3D curve orientation is the same as 2D UV
curve, that is, the start point of coedge (base_surface.evaluate(curve_uv.evaluate(curve_uv.param.min)) is
the same as the start point of edge (within the tolerance of edge).

Required or Option Data Type Data Description
Required Unsignedinteger PRC_TYPE_TOPO_CoEdge
Required BaseTopology Common topology data (name,

attributes, CAD identifier)

Required PtrTopology This must be an edge
(PRC_TYPE_TOPO_Edge) and
must not be NULL

Required PtrCurve UV Curve in the domain of the
face this coedge lies in; may be
NULL

Required Character Orientation of edge with respect to
the loop

Required Character Orientation of the UV curve with

respect to the loop

118 © 1SO 2008 — All rights reserved

7.9.10 PRC_TYPE_TOPO_Loop

7.9.10.1 General

A loop is an list of coedges bounding a portion of a face in a B-rep entity. The loop may define an outer
boundary of a face or it may define a hole within the face.

A loop has the following properties:
e Aloop is an ordered array of references to coedges which define the boundary of the loop.

e The list of coedges form a closed boundary for the portion of the face delimited by the loop. None of
the references may be null and all references must be to PTR_TYPE_TOPO_CoEdge. The start
vertex of one coedge must be the end vertex of the next coedge in the list.

e The loop of coedges is oriented with respect to the face normal using the rule of material to the left.
That is, the cross-product of the tangent to the coedge at any position on the coedge with the face
normal at that same position will point towards or opposite the material of the face within the loop.
The orientation of the loop might be

o O Opposite direction
o 1 Same direction
o 2 Unknown

with respect to the normal of the face. If it is set to unknown, geometric tests must be performed to determine
the correct orientation of the loop (same or opposite).

Required or Option Data Type Data Description
Required Unsignedinteger PRC_TYPE_TOPO_Loop
Required BaseTopology Common topology data (name,

attributes, CAD identifier)

Required Character Orientation of loop with
respect to surface normal

Required Unsignedinteger Number of coedges in the loop

Required ArrayOf [CoedgesInLoop] Coedges in loop

7.9.10.2 CoedgesinLoop

This represents a list of coedges around a loop. The PtrTopology must not be NULL and must point to a
PTR_TYPE_TOPO_CoEdge.

Each coedge in the loop may index a neighboring coedge which shares the same edge but represents
another usage of the edge in a boundary of a face, usually another face on another surface.

© IS0 2008 — All rights reserved 119

Required or Option Data Type Data Description

Required PtrTopology Next coedge in loop

Required Unsignedinteger Index of neighboring coedge (i.e.
coedge which points to the same
edge as this coedge) or 0 if there
is no neighboring coedge

7.9.11 PRC_TYPE_TOPO_Face

A face is a bounded portion of a surface where the surface is not coincident or self intersecting except
possibly at the boundary of the face

It is defined by

e A surface providing the geometric definition of the face. The face always has the same orientation as
the underlying surface.

e An optional Domain may restrict the definition of the face to a portion of the surface. Otherwise the
parameter domain of the face is the domain of the surface.

e Like a vertex and an edge, a face has an associated tolerance which is the topological context
tolerance unless an optional tolerance is specified. If the optional tolerance is specified, it must be
either 0.0 or greater than the topologial context tolerance. See Section 5.7.

e Anunordered list of loops delimiting the bounded portion (interior) of the face.
e One of the loops represents the exterior boundary of the face and the other loops (if any) represent

interior loops (holes) within the face. If PRC_CONTEXT_OuterLoopsFirst is set to TRUE in the
topological context the face is contained in, the index of the outer loop must be defined.

Required or Option Data Type Data Description
Required Unsignedinteger PRC_TYPE_TOPO_Face
Required BaseTopology Common topology data (name,

attributes, CAD identifier)

Required PtrSurface Surface geometry

Required Bit TRUE if the suface definition is
to be trimmed to a specific
domain; else FALSE

OPTION: TRUE Domain UV domain of trimmed surface

Required Bit TRUE if there is a tolerance
associated with this face; else

120 © 1SO 2008 — All rights reserved

FALSE

OPTION:TRUE Double Tolerance

Required Unsignedinteger Number of loops in this face;
must be 1 or more

Required Integer Index of outer loop; it must be
set to -1 if it is not defined

Required ArrayOf [PtrTopology] Array of loops within this face;

each pointer must be of type
PRC_TYPE_TOPO_Loop

7.9.12 PRC_TYPE_TOPO_Shell

7.9.12.1 General

A shell is a collection of faces which form either a closed or open boundary.

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_TOPO_Shell

Required BaseTopology Common topology data (name,
attributes, CAD identifier)

Required Boolean TRUE if the shell is closed; else
FALSE

Required Unsignedinteger Number of faces in shell

Required ArrayOf [FacesInShell] Faces within shell

7.9.12.2 FacesInShell

This represents a collection of faces within a shell. Each face is oriented with respect to the underlying surface
so that the shell normal points outside the material of the shell if the shell is closed and is arbitrary otherwise.

The orientation of the surface with respect to the shell may be

e 0 Opposite direction
o 1 Same direction
o 2 Unknown

© 1SO 2008 — All rights reserved

121

If the orientation is unknown, geometric tests must be performed to determine the correct orientation (within

the shell) of the face (same or opposite) with respect to the surface.

Required or Option Data Type Data Description

Required PtrTopology Face within this shell; this must
be non-NULL and of type
PRC_TYPE_TOPO_Face

Required Character Orientation of face with

repsect to the underlying
surface

7.9.13 PRC_TYPE_TOPO_Connex

This represents a region of space delimited by one or more shells. The shells may be open or closed, may
touch at a vertex, an edge, or a face, or may be contained within another shell if the interior shell represents a

void within the exterior shell.

The region

e may represent a skin if the shells are open

e may represent a manifold solid if all of the shells are closed but not touching

e may represent a non-manifold solid where all of the shells are closed but some touch at a vertex,

edge, or face

If the connex is delimiting material, it is manitory that it be bounded by one or more closed shells.

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_TOPO_Connex
Required BaseTopology Common topology data (name,
attributes, CAD identifier)
Required Unsignedinteger Number of shells in connex
Required ArrayOf [PtrTopology] Shells within this connex; each

entry must be a shell, be non-
NULL, and be of type
PRC_TYPE_TOPO_Shell

7.9.14 PRC_TYPE_TOPO_Body

This represents an abstract type for any topological body

e PRC_TYPE_TOPO_SingleWireBody

122

© ISO 2008 — All rights reserved

e PRC_TYPE_TOPO_BrepData

e PRC_TYPE_TOPO_SingleWireBodyCompress

e PRC_TYPE_TOPO_BrepDataCompress

7.9.15 ContentBody

ContentBody provides

additional

infromation about base topological entities

(PRC_TYPE_TOPO_SingleWireBody and PRC_TYPE_TOPO_BrepData) such as its name, attributes, and
CAD identifier and how the bounding box for a PRC_TYPE_TOPO_BrepData has been calculated.

The following table shows the possible values for bounding box behavior:

Value Type Name

Type Description

0x001 PRC_BODY_BBOX_Evaluation

Bounding box based on geometry

0x002 PRC_BODY_BBOX_Precise

Bounding box based on tessellation

0x004 PRC_BODY_BBOX_CADData

Bounding box given by a CAD data file

Required or Option Data Type Data Description
. Optional topology information (name,
B
Required aseTopology attributes, CAD identifier)
Bounding box behavior; relevent only for
Required Character PRC_TYPE_TOPO_BrepData; otherwise must

be setto 0

7.9.16 ContentWireEdge

This represents the data defining a wire edge. It points to a 3D curve defining the geometrical shape of the
edge. Any curve, including curves on a surface may be used. An optional interval may be used to limit the
portion of the curve used to define the geometry of the edge. This interval must lie within the interval of the
underlying curve. If no triming interval is specified, the edge is defined by the interval defining the curve.

Required or Option Data Type Data Description

Required BaseTopology | Common topology data (name, attributes, CAD
identifier)

Required PtrCurve 3D curve defining the geometry of the wire edge

© ISO 2008 — Al rights reserved

123

Required

Bit

TRUE if the wire edge restricts the 3D curve to a subset

OPTION: TRUE

Interval Interval defining the subset of the 3D curve

represented by the wire edge

7.9.17 PRC_TYPE_TOPO_SingleWireBody

PRC_TYPE_TOPO_SingleWireBody is the topological equivalent of a single curve.

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_TOPO_SingleWireBody

Required ContentBody Common data for PRC base entities
wire edge must be of type

Required PtrTopology PRC_TYPE_TOPO_WireEdge or

PRC_TYPE_TOPO_Edge

7.9.18 PRC_TYPE_TOPO_BrepData

This is the main representation of solid and surface topology (which is not highly compressed).

Required or Option

Data Type

Data Description

Required

Unsignedinteger

PRC_TYPE_TOPO_BrepData

Required

ContentBody

Common data for PRC base
entities

Required

Unsignedinteger

Number of connex entities in
this B-rep

Required

ArrayOf [PtrTopology]

Array of connex entities in this
B-rep; each entry must be non-
NULLL and reference a
PRC_TYPE_TOPO_Connex
entity

OPTION:TRUE

BoundingBox

Optional bounding box; the
required field ContentBody
defines the Boolean flag
indicating the presence of this
bounding box

124

© ISO 2008 — All rights reserved

7.9.19 PRC_TYPE_TOPO_SingleWireBodyCompress

This represents a single wire body stored in compressed format.

Curve_tolerance is the tolerance used to approximate the curve of a single wire body. See Section 5.7.

Required or Option | Data Type

Data Description

Required Unsignedinteger PRC_TYPE_TOPO_SingleWireBodyCompress

Required ContentBody Common data for PRC base entities

Required Double Curve_tolerance is the tolerance that has
been used to approximate the curve of a
single wire body.

Required CompressedCurve

7.9.20 PRC_TYPE_TOPO_BrepDataCompress

7.9.20.1 General

This represents manifold brep data stored in compressed format. In contrast to PRC_TYPE_TOPO_BrepData,
geometrical and topological entities are not shared with other bodies even if they belong to the same

topological context.

e brep_data_compressed_tolerance represents the tolerance used for the brep data approximation.

e number_of_bits_to_store_reference represents the number of bits written in the file for the following

integers

e number_vertex_references represents the number of referenced verticies in the brep; see
CompressedVertex

e number_edge_references

CompressedCurve

represents the number of referenced edges in the brep; see

The number of faces in the compressed brep is calculated as the number of faces in all of the shells in all of

the connex entities.

Required or
Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_TOPO_BrepDataCompress
Required Double brep_data_compressed_tolerance
Required NumberOfBitsThenUnsignedinteger number_of_bits_to_store_reference
Required UnsignedintegerWithVariableBitNumber number_vertex_references

Required UnsignedintegerWithVariableBitNumber number_edge_references

© ISO 2008 — Al rights reserved

125

Required Boolean

TRUE if this brep consists of one connex
entity with one shell

Option:TRUE CompressedShell Single compressed shell

Option: FALSE MultipleCompressedConnex Multiple compressed connex stored in
file

Required ArrayOf[BaseTopology] Base topology data for each of the faces

in the compressed brep data; the order
of elements in this array corresponds to
the order the faces are encountered in
the scanning of connex/shell data within
the compressed brep

7.9.20.2 MultipleCompressedConnex

This represents the data stored when the compressed brep data contains multiple connex entities or multiple

shells within a single connex entity.

Required or | Data Type Data Description

Option

Required Unsignedinteger Number of connex entities
Required ArrayOf[CompressedConnex] Array of compressed connex entities

7.9.20.3 CompressedConnex

This represents all of the shells within a compressed connex entity.

Required or | Data Type Data Description

Option

Required Unsignedinteger Number of shell entities

Required ArrayOf[CompressedShell] Array of compressed shells within a
connex entity

7.9.20.4 CompressedShell

This represents the compressed data for a single shell.

Required or | Data Type Data Description

Option

Required Boolean True if there is only a single face in the
126 © 1SO 2008 — All rights reserved

shell

Option: FALSE

NumberOfBitsThenUnsignedinteger

Number of faces in the shell if there is
more than a single face

Required ArrayOf[CompressedFace] Array of faces within the shell. All iso
faces are stored first followed by all of
the non-iso faces.

Required ArrayOf[Boolean] Array of Boolean values indicating if the

face is an iso face (TRUE) or not
(FALSE). This is in the same order as
the previous array of compressed faces.

7.9.20.5 Compressed Face

7.9.20.5.1 General

This represents the data for a single compressed face. There are two types of compressed faces: iso-faces
and ana-face. An iso-face is a surface trimmed by four iso-parametric curves. If a face is not an iso-face, it is

an ana-face.

The types of iso-faces include ISO_PLANE, ISO_CYLINDER, ISO_CONE, ISO_SPHERE, ISO_TORUS, and
ISO_NURBS. Except for an ISO_NURBS, an iso-face is described using two curves. For example, an
ISO_CYLINDER is described using the first line and the first circular arc. These data are sufficient to deduce

the cylindrical surface and the two other trimming edge curves.

For both types of faces, all curves used to define or trim them are 3D. Therefore, surface parameterizations
are not described and are set arbitrarily. For performance reasons, it is preferable that the surface
parameterization is set so that the trimming edges do not cross seams on closed or periodic surfaces.

ISO_CYLINDER are implicit curves. Other curves are explicit. Explicit curves are stored with the same
orientation as the loop that references them first in the compressed B-rep data.

If the face belongs to a shell and the curve was already serialized by a neighbor's face, it is referenced with an

index.

7.9.20.5.2 Enumeration of compressed entity types

The following lists the types for compressed entities.

Value Name Description
0 PRC_HCG_NewLoop Intermediate trimming loop on an AnaFace
1 PRC_HCG_EndLoop Last trimming loop on an AnaFace
2 PRC_HCG_IsoPlane Plane trimmed by iso parametric curves
3 PRC_HCG_lsoCylinder Cylinder trimmed by iso parametric curves
4 PRC_HCG_IsoTorus Torus trimmed by iso parametric curves

© ISO 2008 — Al rights reserved

127

5 PRC_HCG_IsoSphere Sphere trimmed by iso parametric curves

6 PRC_HCG_lIsoCone Cone trimmed by iso parametric curves

7 PRC_HCG_IsoNurbs Nurbs trimmed by iso parametric curves

8 PRC_HCG_AnaPlane Plane trimmed with non-iso parametric curves

9 PRC_HCG_AnaCylinder Cylinder trimmed with non-iso parametric curves

10 PRC_HCG_AnaTorus Torus trimmed with non-iso parametric curves

11 PRC_HCG_AnaSphere Sphere trimmed with non-iso parametric curves

12 PRC_HCG_AnaCone Cone trimmed with non-iso parametric curves

13 PRC_HCG_AnaNurbs Cone trimmed with non-iso parametric curves

14 PRC_HCG_AnaGenericFace ana face lying on an uncompressed surface which
can be of any type under PRC_TYPE_SURF

0 PRC_HCG_Line Compressed line

1 PRC_HCG_Circle Compressed circle

2 PRC_HCG_BsplineHermiteCurve Compressed hermite bspline

12 PRC_HCG_Ellipse Compressed ellipse; reserved for future use

13 PRC_HCG_CompositeCurve Compressed composite

7.9.20.5.3 PRC_HCG_IsoPlane

The origin of the plane is the first vertex of the loop.

Required or | Data Type Data Description

Option

Required CompressedEntityType PRC_HCG_IsoPlane

Required Double X coordinate of unit plane normal

Required Double Y coordinate of unit plane normal

Required Boolean TRUE if Z coordinate of unit plane
normal is greater than 0.0; else FALSE

Required ContentCompressedFace Boundary of compressed face

128 © 1SO 2008 — All rights reserved

7.9.20.5.4 PRC_HCG_IsoCylinder

A conforming PRC Reader should recognize accordingly lines and

reconstruct a cylinder surface.

circles from ContentCompressedFace to

Required or | Data Type
Option

Data Description

Required CompressedEntityType

PRC_HCG_IsoCylinder

Required ContentCompressedFace

Boundary of compressed face

7.9.20.5.5 PRC_HCG_IsoTorus

is_major_radius is true if the first serialized circle corresponds to the major radius, which is the largest one if

the torus is a donut.

A conforming PRC Reader should recognize and classify circles from ContentCompressedFace to

reconstruct a torus surface.

Required or | Data Type
Option

Data Description

Required CompressedEntityType PRC_HCG_IsoTorus
Required Boolean Is_major_radius
Required ContentCompressedFace Boundary of compressed face

7.9.20.5.6 PRC_HCG_IsoSphere

A conforming PRC Reader should recognize and classify circles from ContentCompressedFace to
reconstruct a sphere surface.

Required or | Data Type Data Description
Option

Required CompressedEntityType PRC_HCG_lsoSphere
Required ContentCompressedFace Boundary of compressed face

7.9.20.5.7 PRC_HCG_IsoCone

A conforming PRC Reader should recognize accordingly lines and circles from ContentCompressedFace to
reconstruct a cone surface.

Required or

Data Type

Data Description

© ISO 2008 — Al rights reserved

129

Option

Required CompressedEntityType PRC_HCG_IsoCone

Required ContentCompressedFace Boundary of compressed face

7.9.20.5.8 PRC_HCG_AnaPlane

The origin of the plane is the first vertex of the loop.

Required or | Data Type Data Description

Option

Required CompressedEntityType PRC_HCG_AnaPlane

Required Double X coordinate of unit plane normal

Required Double Y coordinate of unit plane normal

Required Boolean TRUE if Z coordinate of unit plane
normal is greater than 0.0; else FALSE

Required ContentCompressedFace Boundary of compressed face

7.9.20.5.9 PRC_HCG_AnaCylinder

The analytic cylinder axis is defined from point_on_axis and cylinder_axis_direction.
The cylinder radius is computed using loop vertices to obtain an average radius when projected onto the axis.

Required or | Data Type Data Description
Option

Required CompressedEntityType PRC_HCG_AnaCylinder
Required ContentCompressedFace Boundary of compressed face
Required CompressedPoint Point on cylinder axis
Required CompressedPoint Direction of cylinder axis

7.9.20.5.10 PRC_HCG_AnaTorus

x_axis and y_axis define the torus placement.
x_axis length is equal to the major torus radius.
y_axis length is equal to the minor torus radius.

130 © IS0 2008 — Al rights reserved

Required or | Data Type Data Description
Option

Required CompressedEntityType PRC_HCG_AnaTorus
Required ContentCompressedFace Boundary of compressed face
Required CompressedPoint Torus center

Required CompressedPoint Torus x_axis

Required CompressedPoint Torus y_axis

7.9.20.5.11 PRC_HCG_AnaSphere

The radius of the sphere is computed using the first vertex of the loop and sphere_center.

Required or | Data Type Data Description
Option

Required CompressedEntityType PRC_HCG_AnaSphere
Required ContentCompressedFace Boundary of compressed face
Required CompressedPoint Sphere center

7.9.20.5.12 PRC_HCG_AnaCone

axis_point and apex_point are used to compute the
The cone origin and the semi-angle correspond to the loop vertex that is furthest from the z-axis.

z-axis.

Required or | Data Type Data Description
Option

Required CompressedEntityType PRC_HCG_AnaCone
Required ContentCompressedFace Boundary of compressed face
Required CompressedPoint Axis point

Required CompressedPoint Apex point

7.9.20.5.13 PRC_HCG_AnaGenericFace

This represents the data stored for any analytic face where the surface data of the face are not compressed.
In this case, the trimming data for the face is saved and a regular surface description is saved, if there is one.

© 1SO 2008 — All rights reserved

131

It cases where no surface data has been saved, the entity type PRC_TYPE_ROOT is stored in the file. This
can happen if the original data in the PRC File are corrupted.

Required or | Data Type Data Description
Option

Required CompressedEntityType PRC_HCG_AnaGenericFace
Required ContentCompressedFace Boundary of compressed face
Required PRC_TYPE_SURF or PRC_TYPE_ROOT Surface definition

7.9.20.5.14 PRC_HCG_IsoNurbs

7.9.20.5.14.1 General

An iso-NURBS surface is a face trimmed by four iso-parametric curves. This type of iso-face is special
because it is not stored using the first two curves (see 7.9.20.5).

In this case, the surface is stored using the following information:
e orientation_surface_with_shell is defined in FacesInShell.
e orientation_loop_with_surface is defined in PRC_TYPE_TOPO_Loop.

e sense_array is the correspondence between the surface natural boundaries, as described in
CompressedNurbs, and the trim curves.

The two first boolean values describe where the first curve is. Their possible values are:
o Talse false : the first curve is on Umin.
e Talse true : the first curve is on Vmin.
e true false : the first curve is on Umax.
e true true: the first curve is on Vmax.

If the last boolean value is false, the sense is the same as if the first curve is on Umin, the second curve is on
Vmin, and the third curve is on Umax. If the last boolean value is true, the reverse sense is applied.

The four curve types are stored as reference (identifier), line, circle, or other (iso boundary of surface).
e number_of_bits_to_store_reference is described in PRC_TYPE_TOPO_BrepDataCompress.

e reference_indice is described in RefOrCompressedCurve.

Required or | Data Type Data Description
Option
Required CompressedEntityType PRC_HCG_IsoNurbs

132 © 1SO 2008 — All rights reserved

http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/group___tf_x_k_b_spline_surface_____serialize.html�
http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/group___tf_x_k_b_spline_surface_____serialize.html�
http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/group___tf_brep_data_data_____serialize_compact.html�
http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/group___tf_brep_data_data_____serialize_compact.html�
http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/group___tf_x_k_curve___serialize.html�
http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/group___tf_x_k_curve___serialize.html�

Required Boolean Orientation of surface with shell

Required Boolean Orientation of loop with surface

Required ArrayOf[Boolean] Three values of sense array

Required PRC_HPG_Nurbs Compressed Nurbs surface

Required ArrayOf[IsoNurbsTrimCurve] Trimming information for four boundary
curves

7.9.20.5.14.2 IsoNurbsTrimCurve

Required or | Data Type Data Description

Option

Required Boolean Is referenced

Option:TRUE UnsignedIintegerWithVariableBitNumber | Index of trim curve

Option:FALSE

IsoNurbsTrimCrv

Save trim curve

7.9.20.5.14.3

IsoNurbsTrimCrv

7.9.20.5.14.3.1 General

Save the actual trim curve data on an iso NURBS surface.

Required or | Data Type Data Description

Option

Option: IsoNurbsTrimCrvLine Save the data defining a trim curve
which is of type PRC_HCG_Line

Curve_type ==

PRC_HCG_Line

Option: IsoNurbsTrimCrvCircle Save the data defining a trim curve
which is of type PRC_HCG_Circle

Curve_type ==

PRC_HCG_Circle

Option:

default

Boolean

Save the boolean flag with value TRUE;
this means the trimming curve is one of
the iso boundaries of the surface

© 1SO 2008 — All rights reserved

133

7.9.20.5.14.3.2 IsoNurbsTrimCrvLine

Required or Option | Data Type Data Description
Required Boolean Save FALSE
Required Boolean Save FALSE

7.9.20.5.14.3.3 IsoNurbsTrimCrvCircle

Required or Option Data Type Data Description

Required Boolean Save FALSE

Required Boolean Save TRUE

Required CompressedCircle Save compressed circle as trim curve

7.9.20.5.15 PRC_HCG_AnaNurbs

Required or Option | Data Type Data Description
Required CompressedEntityType PRC_HCG_AnaNurbs
Required ContentCompressedFace Boundary of compressed face
Required CompressedNurbs Compressed nurbs surface

7.9.20.6 CompressedNurbs

7.9.20.6.1 General

This defines the storage of a compressed NURBS surface.

A compressed NURBS surface is defined by the following data.

See CompressedControlPoints, CompressedKnotVector, and CompressedMultiplicities for a
description of converting from a NURBS surface to a compressed NURBS surface.

Name

Description

Number_ccpt_in_u

Number of control points in u

Number_ccpt_in_v

Number of control points in v

Number_knots_in_u

Number of knots in U

134

© ISO 2008 — All rights reserved

Number_knots_in_v Number of knots in V

Is_closed_in_u Boolean flag indicating a surface closed in u
Is_closed_in_v Boolean flag indicating a surface closed in v

Ccpt Two dimensional array of control points

Ccpt_type Two dimensional array of integers defining the type of

control point; see type_param for legal values

Cknot_u Array of knots in U

Cknot_v Array of knots in V

Mult_u Array of multiplicities at the knots in U

Mult_v Array of multiplicities at the knots in V
Is_rational Boolean flag indicating if the surface is a rational

surface (TRUE) and thus has an optional array of
weights at the control points

Weight Array of weights if the surface is rational

brep_data_compressed_tolerance is the tolerance for approximation as described in
PRC_TYPE_TOPO_BrepDataCompress.

The following are used for stored compressed control points:
e number_of_bits_for_isomin is the number of bits used to store first row and column of control points

e number_of_bits_for_rest is the number of bits to store the remainder of the control points

The following are used for stored compressed knot values in U or V:
e number_bit_parameter is the number of bits used to store knots

e tolerance_parameter is the tolerance used to store knots

The following are used for stored weights of rational NURBS surfaces:

e number_bit_weight is the number of bits to store weights

e weight_tolerance is the tolerance used to store weights
A conforming PRC Writer must ensure that all these numbers and tolerances used to store control points,
knots and weights are appropriately chosen so that the overall brep_data_compressed_tolerance is
respected. The algorithms to ensure this are not part of this specification.
type_param can have one of the following values:

e O for uniform parameterization.

e 1 for non-uniform parameterization.

© IS0 2008 — Al rights reserved 135

e 2 for pseudo-uniform parameterization, meaning that the parameterization is uniform except for

extremities, mostly coming from a trim applied uniformly.

The following are used in the definition of a compressed nurbs surface:

Nurbs_tolerance = brep_data_compressed_tolerance /5.0

Number_stored_knots_in_u = number_of_knots_in_u - 2

Number_stored_knots_in_v = number_of_knots_in_v — 2

Number_bits_u = (degree_in_u ? ceil[log(degree_in_u + 2) / log(2)] : 2)

Number_bits_v = (degree_in_v ? ceil[log(degree_in_v + 2) / log(2) 1 : 2)

tolerance_parameter

= 1./ 27(number_bit_parameter -1)

Required | Data Type Data Description

or Option

Required CompressedEntityType PRC_HCG_Nurbs

Required UnsignedintegerWithVariableBitNumber Degree_in_u stored with 5 bits

Required UnsignedintegerWithVariableBitNumber Degree_in_v stored with 5 bits

Required UnsignedintegerWithVariableBitNumber Number_stored_knots_in_u stored using
16 bits; the integer represents the number
of knots in u that are stored in the knot_u
array

Required ArrayOf[CompressedMultiplicities] Array mult_u of data describing the knot
multiplicities in U for Number_stored_
knots_in_u knots

Required UnsignedintegerWithVariableBitNumber Number_stored_ knots_in_v stored using
16 bits; the integer represents the number
of knots in u that are stored in the knot_u
array

Required ArrayOf[CompressedMultiplicities] Array mult_v of data describing the knot
multiplicities in V for Number_stored_
knots_in_v knots

Required Boolean Is_closed_in_u

Required Boolean Is_closed_in_v

136 © 1SO 2008 — All rights reserved

Required UnsignedintegerWithVariableBitNumber Number_of_bits_for_isomin stored using
20 bits

Required UnsignedintegerWithVariableBitNumber Number_of_bits_for_rest stored using 20
bits

Required CompressedControlPoints Compressed control points for the surface

Required CompressedKnotVector Save type_param_u, number_knots_u,
and knots_u

Required CompressedKnotVector Save type_param_v, number_knots_v,
and knots_v

Required Boolean Is_rational

Option:TRUE | CompressedWeights Save weights

7.9.20.6.2 CompressedMultiplicities

This defines an array of data stored to define the multiplicity of knots at each knot in the knot array for either U

or V parameter.

number_stored_knots is either Number_stored_knots_in_u or Number_stored_knots_in_v

number_bits is either number_bits_u or number_bits_v.

Multiplicity is either mult_u or mult_v.

For each of the knots (0 <= i < number_stored_knots), the following data is stored

e A Boolean flag indicating if additional data is stored

o Multiplicity_is_stored = (multiplicity[i] == multiplicity[i-1] || !'i)

e Optionally store the multiplicity at this knot using number_bit bits

Required | Data Type Data Description

or Option

Required Boolean Multiplicity_is_stored

Option:TRUE | UnsignedintegerWithVariableBitNumber Multiplicity[i] stored using number_bits

© ISO 2008 — Al rights reserved

137

7.9.20.6.3 CompressedControlPoints
7.9.20.6.3.1 General

nurbs_tolerance describes the tolerance used to approximate the original nurbs surface. It ensures that each
point on the compressed nurbs surface is at a distance of the original surface less than nurbs_tolerance.

compressed_control_point P is a two dimension array containing double values that allow to
recompute X, y, z values of consecutive points. At start, the surface is copied into a working structure
which is updated step by step. POO coordinates are pushed in compressed_control_point and into
the working structure, thus POO_compressed = POO_working_structure = P00. Then P10 - P0OO is
computed and each vector component is approximated to the nearest multiple of the
nurbs_tolerance. This truncated vector (P10 - POO_working_structure)_truncated is pushed into
compressed_control_point. Then P10_working_structure is computed as follows : P10_
working_structure = (P10 - POO_working_structure)_truncated + P00 _working_structure. This point
is re-injected into the working structure to avoid error propagation. In the same way, (P20-
P10_working_structure)_truncated is pushed into compressed_control_point. P20_working_structure
is computed and re-injected in the working structure. The same formula applies for each Pi0 and
then POi control points.

Internal compressed control points are also computed with previously stored points. for each i and
for each j, Pij_compressed is computed

V= Pj,i—l - Pj—l.ifl

U =P JE . Pj—l,i—l

Pi,j(compressed) = Pi‘j - (Pifl,jfl +\7 +U)

Four cases are considered:

e If Pij(compressed) length is less than nurbs_tolerance, control_point_type is set to zero and
no value is pushed into compressed_control_point.

(PHVF1 +V +U) is reinjected in the working structure to replace Pij.

Otherwise, Pij(compressed) is evaluated in the following local coordinate system :

138 © IS0 2008 — Al rights reserved

U p N
- i, j(compressed) *
vl

P

iji= i, j(compressed) * ‘

N

7‘ AN

g N
i j(d) || o
i, j(compresse HNH

vl

o ifx* +y?value is less than nurbs_tolerance?, control_point_type is set to 1 and z is added in
compressed_control_point.

e else if the z component length is less than nurbs_tolerance, control_point_type is set to 2
and the coordinates x and y are added in compressed_control_point.

e else x, y and z are stored in compressed_control_point. control_point_type is set to 3. If one
of the vectors V, U, or N has a length less that 1e-12, this case is systematically used.

P is a two dimensional representation of the control points for a compressed Nurbs surface.

When linearized, the data is stored in the following order

e The corner point P[0][0] is stored as a Vector_3d (i.e. three doubles);

e The remainder of the first row of control points is stored as Point3DWithVarBitNumber

e The remainder of the first column of control points is stored as Point3DwithVarBitNumber

e The remainder of the matrix is stored by row (i.e. for a given i from 1 to number_ccpts_in_u, save the
row of control points from j=1 to number_ccpts_in_v. For each point

(o}

[0}

o

[0}

Save the type of control point

If the type is 1, save the z coordinate of the control point

If the type is 2 save the x and y coordinates of the control point

If the type is 3 save the x, y, and z coordinates of the contol point

All Point3DWithVariableBitNumber data is written using Nurbs_tolerance and (number_of_bits_for_isomin + 1).

Required | Data Type Data Description

or Option

Required Vector_3d P[O][0]

Required ArrayOf[Point3DwithVariableBitNumber] | PIO1Li] 1 <=] <
number_ccpt_in_v

Required ArrayOf[Point3DwithVariableBitNumber] | PLT1[0] 1 <= 1 <
number_ccpt_in_u

Required ArrayOf[InteriorCompressedControlPoints] | Array of data describing
interior compressed control
points. The points are saved

using the order
pseudo code

in the previous

© ISO 2008 — Al rights reserved

139

7.9.20.6.3.2 InteriorCompressedControlPoints
This represents the data stored for each interior compressed control point.
All DoubleWithVariableBitNumber data is written using Nurbs_tolerance and (number_of_bits_for_rest + 1).

The array of interior compressed control points is a two dimensional array written as

for (i=1;i<number_ccpt_in_u; i++) {

for (j =1;j<number_ccpt_in_v; j++) {

write P[i][j]
}
}
Required | Data Type Data Description
or Option
Required UnsignedintegerWithVariableBitNumber | Ccpt_Typeli]lj]
Is written with 2 bits
Option: DoubleWithVariableBitNumber PLi1L -z
Type ==
Option: DoubleWithVariableBitNumber PLIILT-x
Type ==
Option: DoubleWithVariableBitNumber PLi1LI] -y
Type ==
Option: DoubleWithVariableBitNumber PLIILT-x
Type ==
Option: DoubleWithVariableBitNumber PLi1LI]-y
Type ==
Option: DoubleWithVariableBitNumber PLI10]-2

140 © 1SO 2008 — All rights reserved

Type ==

7.9.20.6.4 CompressedKnotVector

7.9.20.6.4.1

General

The knot vectors are always between 0 and 1. The multiplicities are stored as described in the PRC File
Format Specification. See 7.9.20.6.2. U knots are treated first, then V. Three types of knot parameterization

are considered.

e [fitis uniform, no parameter is stored in compressed_knot. This corresponds to type_param

=0.

e If itis pseudo uniform, the interval length between the two first parameters is computed and
truncated using tolerance_parameter, and then stored into compressed_knot. Same for the
two last parameters. This corresponds to type_param = 1.

e Otherwise, internal parameters are stored. For each internal parameter, a difference between the
precedent compressed parameter is computed, truncated using tolerance_parameter and stored into

compressed_knot. This corresponds to type_param = 2.

This represents the data stored for the knot vector of a compressed NURBS surface. The type_param and
knot vector is saved for either the U or V parameter values.

Required | Data Type Data Description

or Option

Required UnsignedintegerWithVariableBitNumber | Number_bit_parameter is saved using 6 bits
Required Boolean Type_param ==

Option: CompressedKnots

FALSE

7.9.20.6.4.2 CompressedKnots

This represents saving the knots (either knots_u or knots_v) for a compressed NURBS.

Required | Data Type Data Description
or Option

Required Boolean Type_param ==1
Option: Boolean Type_param == 2
FALSE

© ISO 2008 — Al rights reserved

141

Required

ArrayOf[CompressedKnot]

Save the
knots

array of compressed

7.9.20.6.4.3

This represents a single entry in an array of compressed knots.

CompressedKnot

e The number of elements in the array is given by number_knots

e The DoubleWithVariableBitNumber is written using tolerance_parameter and
number_bit_parameter

e The format of the data is either Double or DoubleWithVariableBitNumber in the file depending upon
the Boolean test (number_bit_parameter > 30).

The array may be either an array of knot_u or knot_v defining the compressed NURBS surface.

Required Data Type Data Description
or Option

Option: TRUE | Double Knot[i]
Option:FALSE | DoubleWithVariableBitNumber Knot[i]

7.9.20.6.5 CompressedWeights

This represents the data stored for the weights of a compressed NURBS surface.

e The number of entries to store is (number_ccpt_in_u * number_ccpt_in_v)

e The DoubleWithVariableBitNumber is written using weight_tolerance and number_bit_weight

e The format of the data is either Double or DoubleWithVariableBitNumber in the file depending upon
the Boolean test (number_bit_weight > 30)

Required Data Type Data Description

or Option

Required UnsignedintegerWithVariableBitNumber Number_bit_weight save with 6 bits
Option:TRUE | ArrayOf[Double] Save weight array (without compression)
Option:FALSE | Double Weight tolerance

Option:FALSE

ArrayOf[DoubleWithVariableBitNumber]

Save weight array using compression

142

© ISO 2008 — All rights reserved

7.9.20.7 ContentCompressedFace

7.9.20.7.1 General

This represents the data for a compressed face. A compressed face is further classified by its trimming curves.
An IsoFace is trimmed by four iso-parametric trimming curves. An AnaFace is trimmed by any other
combination of trimming curves.

Vertex loops are used to represent a loop consisting of a single vertex, such as might exist on the apex of a
cone, or a sphere touching a plane. They are represented by a degenerate line which has identical start and
end vertices.

orientation_surface_with_shell describes the orientation of the surface normal with respect to the shell. See
PRC_TYPE_TOPO_Shell.

orientation_loop_with_surface describes the orientation of a loop with respect to a surface normal. See

PRC_TYPE_TOPO_Loop.

Required or Option Data Type Data Description

Required Boolean Orientation_surface_with_shell
Option: is_an_iso_face is | ContentCompressedisoFace Save data for a compressed iso
TRUE face

Option: is_an_iso_face is | ContentCompressedAnaFace Save data for a face trimmed by
FALSE analytic curves

7.9.20.7.2 ContentCompressedlsoFace

In the case of an IsoFace, the first and second trim curves are stored explicitly, either by reference or actual
data. Reference to the third or fourth trim curve is stored in case the actual data has been stored by an
adjacent face. Otherwise, the third or fourth trim curve will have to be deduced from the first and second trim
curves and a vertex representing the join between the third and fouth trim curves.

Required or Option | Data Type Data Description
Required Boolean Orientation_loop_with_surface
Required RefOrCompressedCurve First trim curve on face
Required RefOrCompressedCurve Second trim curve on face
Required Boolean TRUE if third_trim_curve_is_not_yet_saved
Option:FALSE NumberOfBitsThenUnsigned! | Index of the third trim curve
nteger

© IS0 2008 — All rights reserved 143

Required Boolean TRUE if fourth_trim_curve_is_not_yet_saved
Option:FALSE NumberOfBitsThenUnsign | Index of the fourth trim curve
edInteger

Option: CompressedVertex Save the common_third_fourth_vertex if
third_trim_curve_is_not_yet_saved AND

third_trim_curve_is_not_y fourth_trim_curve_is_not_yet_saved

et_saved AND

fourth_trim_curve_is_not_

yet_saved

7.9.20.7.3 ContentCompressedAnaFace

7.9.20.7.3.1 General

If the AnaFace has trimming boundaries, all of the trimming loops are stored as an array of loops with the last
loop in the array having type PRC_HCG_EndLoop and all other loops having type PRC_HCG_NewLoop.

If the AnaFace is defined by a torus and all of the trimming loop are vertex trimming loops (e.g. the loop
consists of a single degenerate line), a point on the torus far from degeneracy is stored to indicate the interior
of the face (this corresponds to a “lemon*” side versus an “apple” side).

Required or Option | Data Type Data Description

Required Boolean TRUE if surface is trimmed; else
FALSE

Option: TRUE ArrayOf[AnaFaceTrimLoop] Array of trimming loops on the face.

The last loop in the array is of type
PRC_HCG_EndLoop; all others are
of type HPC_HCG_TOPO_NewLoop

Option: CompressedPoint Point_on_torus
all_loops_are_vertex_loops
AND Surface_type is
PRC_HCG_AnaTorus
AND surface is trimmed

7.9.20.7.3.2 AnaFaceTrimLoop
This represents the trimming curves for a loop on a compressed AnaFace.

The last loop on the face is of type of PRC_HCG_EndLoop. Other loops on the face are of type
PRC_HCG_NewLoop.

PRC_HCG_EndLoop and PRC_HCG_NewLoop are used to denote the end of loops with “particular* curve
types that will signal the end of a loop or the end of all loops.

144 © 1SO 2008 — All rights reserved

Required or | Data Type Data Description
Option

Required Boolean Orientation of loop with surface
Required ArrayOf[RefOrCompressedCurve] Array of curves in the trimming loop
Required Boolean Boolean value is always TRUE; this

represents a boolean flag that means
curve_is_NOT_already_stored is TRUE;
it is used when reading a PRC File to
signal the end of the curves in a loop and
the end of all loops.

Required CompressedEntityType Will be PRC_HCG_EndLoop for last loop
and PRC_HCG_NewLoop for all other
loops

7.9.20.8 RefOrCompressedCurve

The flag curve_is_NOT_already_stored indicates if the trim curve has already been stored in the
compressed brep data. If the curve has already been stored, the index of the curve is stored in the file;
otherwise, a compressed version of the trim curve is stored.

The index is stored with a variable number of bits indicated by number_of bits_to_store_reference.
See 7.9.20 for a definition of this number.

Required or | Data Type Data Description

Option

Required Boolean Curve_is_NOT_already_stored

Option:FALSE UnsignedintegerWithVariableBitNumber Index to the already stored
compressed curve data

Option:TRUE CompressedCurve Store the compressed curve
data.

7.9.20.9 CompressedCurve

7.9.20.9.1 General

A compressed curve is one of PRC_HCG_Line, PRC_HCG_Circle, PRC_HCG_BsplineHermiteCurve or
PRC_HCG_CompositeCurve.

The curve type PRC_HCG_Ellipse is reserved for future use.

7.9.20.9.2 PRC_HCG_Line

The representation of a compressed line (PRC_HCG_Line) is context dependent.

© IS0 2008 — All rights reserved 145

If a compressed line is part of a compressed face, the compressed line is represented by a pair of start/end
vertices; otherwise it is represented by a pair of start/end points.

Curve_trimming_face is TRUE if this compressed line is part of a PRC_TYPE_TOPO_BrepDataCompress; it
is FALSE if this compressed line is a part of a PRC_TYPE_TOPO_SingleWireBodyCompress.

Required or Option | Data Type Data Description
Required CompressedEntityType PRC_HCG_Line
Required StartEndData Save the start/end trim data

7.9.20.9.3 PRC_HCG_Circle

7.9.20.9.3.1 General
The representation of a compressed circle (PRC_HCG_Circle) is context dependent.
The data stored for a compressed circle depends upon the context it is used in:
e curve_trimming_face is TRUE to indicate that the circle is used as part of the trimming data for a face
(i.e as part of a PRC_TYPE_TOPO_BrepDataCompress) or is FALSE to indicate that the circle is not
part of a face (i.e. it is used as part of PRC_TYPE_TOPO_SingleWireBodyCompress)

e compressed_iso_spline is TRUE if the circle is being used as the trim boundary of an
PRC_HCG_IsoNurbs; otherwise it is FALSE

In addition, the data stored for a compressed circle depends on the geometry of the circle. A circular arc with
angle 0.0, PI, or 2*PI will have different data. The particular_circle Boolean flag indicates this.

Required or Option Data Type Data Description

Option: CompressedEntityType PRC_HCG_Circle
compressed_iso_spline is

FALSE

Required Boolean Particular_circle

Option: Particular_circle is | ParticularCircle Circular arc with angle 0, PI, or 2*PI
TRUE

Option: Particular_circle is | GeneralCircle Not a special circle

FALSE

7.9.20.9.3.2 ParticularCircle
This is the data that is stored if the compressed circle is a special case (circular arc with angle 0, PI, or 2*PI).

Full_circle is TRUE if the start point and end point of the trim curve are identical (to within tolerance).

Required or Option Data Type Data Description

146 © 1SO 2008 — All rights reserved

Required Boolean Full_circle

Option: compressed_iso_spline is | StartEndData Save the start/end trim data
FALSE

Option: Full_circle is TRUE CompressedPoint Center of circle

Option: Full_circle is TRUE CompressedPoint Normal to plane of circle
Option: Full_circle is FALSE CompressedPoint Middle point on circular arc

7.9.20.9.3.3 GeneralCircle

This is the data that is stored for a general circle or circular arc.

Required or Option Data Type Data Description
Required StartEndData Save the start/end trim data
Required CompressedPoint Center of circle

Required Boolean Circle_angle > PI

7.9.20.9.4 PRC_HCG_BsplineHermiteCurve

A compressed Hermite curve structure contains information to store a compact representation of a Bspline
curve with degree 3.

A Hermite curve is defined by the following data:

e Compression_tolerance is the tolerance that was used to approximate the original nurbs curve; see
7.9.20 or 7.9.19.

e Compressed_points are the control points representing the Hermite curve

e Compressed_tangents describe how internal points computed from tangents are compressed

e Point_number_bits is the number of bits used to store each compressed control point coordinate if
control points are stored using a variable number of bits; a conforming PRC Writer will obtain this

number through the routine GetNumberOfBitUsedToStoreUnsignedinteger

e Tangent_number_bits is the number of bits used to store each compressed tangent coordinate if the
tangents are stored using a variable number of bits

Start and end curve points are explicitly stored in the PRC File. Compressed_points (Ptc) and
compressed_tangents (Tgtc) allow to compute the control polygon. Compressed_points contains points on the
curve stored with difference :

P,=StartPt P, =P, , +(Pt [ix3], Pt [ix3+1],Pt [ix3+2]) P, =EndPt

© IS0 2008 — All rights reserved 147

compressed_tangent contains curves’ tangents at each Ptc. It is used to determine two controls points
between each point on curve (Pi)

b _p , (T9t[0].Tgt [1]. Tgt,[2])
1—'o
HP3—P0\

(Tat,[3], Tat . [4], Tat, [5])

P,=P. -

‘ ? HP37P0H

p _p . (T9t[3].Tgt,[4].Tat.[5])
' ? HP67P3H

The Bspline knot values are implicit and computed using control points.
U,=0 U,=U,, +HF>3i P

Multiplicities are implicitly 4 for start and end knot and 3 for internal knots.

Required or Option | Data Type Data Description

Required CompressedEntityType PRC_HCG_BsplineHermiteCurv
e

Required StartEndData Save the start and end trimming

data as either vertices or points

Required UnsignedintegerWithVariable BitNumber Number_bits is the number of
bits used to store
number_points; this number is
stored with 4 bits

Required UnsignedintegerWithVariable BitNumber Number_points is the number of
compressed control points

Required UnsignedintegerWithVariable BitNumber Point_number_bits is the
number of bits used to store
compressed points; this number
is stored with 6 bits

148 © 1SO 2008 — All rights reserved

Option:
point_number_bits>30

ArrayOf[Vector3d]

Array of number_points
compressed points

Option:

Point_number_bits<=30

ArrayOf[Point3DWithVariableBitNumber]

Array of number_points
compressed points with variable
number of bits

Required UnsignedintegerWithVariable BitNumber Tangent_number_bits is the
number of bits used to store
compressed tangents; this
number is stored with 6 bits

Option: ArrayOf[Vector3d] Save number_points

tangent_number_bits>30

compressed tangents

Option:

tangent_number_bits<=3
0

ArrayOf[Point3DWithVariableBitNumber]

Save number_points
compressed tangents with
variable number of bits

7.9.20.9.5 PRC_HCG_CompositeCurve

Required or Option Data Type Data Description

Option: CompressedEntityType PRC_HCG_CompositeCurve

! compressed_iso_spline

Required StartEndData Save the start and end
trimming data as either
vertices or points

Required Unsignedinteger Dimension of the compressed
composite curve (either 2 or
3)

Required Boolean TRUE if the curve is closed;
else FALSE

Required Unsignedinteger Number of curves in the
composite

Required ArrayOf[CompressedCurve] Array of compressed curves

which was written with the
flag curve_trimming_face set
to FALSE

7.9.20.9.6 StartEndData

This data defines the start and end verticies/positions of a trim curve. It is context dependent (see 7.9.20.9.2

or 7.9.20.9.3).

© ISO 2008 — Al rights reserved

149

Option:

Curve_trimming_face is TRUE

CompressedVertex

Start vertex

Option: CompressedVertex End vertex
Curve_trimming_face is TRUE

Option: CompressedPoint Start point
Curve_trimming_face is FALSE

Option: CompressedPoint End point

Curve_trimming_face is FALSE

7.9.20.10 CompressedVertex

This represents a compressed vertex either as a compressed point or a reference to an already compressed
point. Each compressed brep data serialization maintains an array of previously written vertices, starting at

index 0.

number_of_bits_to_store_reference is the number of bits used to define a reference to compressed data and
is described in PRC_TYPE_TOPO_BrepDataCompress.

Required or | Data Type Data Description
Option
Required Boolean TRUE if vertex is NOT already stored

Option:FALSE

UnsignedintegerWithVariableBitNumber

Index to the already stored compressed
point data

Option:TRUE

CompressedPoint

Compressed point data.

7.9.20.11 CompressedPoint

This represents a compressed point. The representation of the compressed point in the PRC File may be
either as a Point3DwithVariableBitNumber or as a PRC_TYPE_TOPO_UniqueVertex depending upon how
many bits are necessary to represent the data.

When a PRC File Writer writes a compressed point, the number of bits necessary to store the point is
calculated using the formula

Double dTol = brep_data_compressed_tolerance / 100.0;

Unsigned int uMaxCoordinate = MAX(fabs(x), fabs(y), fabs(z)) / dTol + 1;

Unsigned int uNbBits = GetNumberOfBitUsedToStoreUnsignedinteger(uMaxCoordinate);

150

© ISO 2008 — All rights reserved

If uNbBIts is greater than 30, the compressed point is stored as a PRC_TYPE_UniqueVertex; otherwise it is
stored as a Point3DwithVariableBitNumber.

Required or | Data Type Data Description

Option

Required UnsignedintegerWithVariableBitNumber uNDbBits is stored using 6 bits

Option: Point3DWithVariableBitNumber Compressed point data is stored as a 3D
point with uNbBits bits and dTol

uNbrBits <=30 tolerance

Option:

Vector3d

Compressed point data is stored as a

unique vertex
uNbrBits >30

7.9.21 PRC_TYPE_TOPO_WireBody

[Editor Note: Reserved for future use.]

7.9.22 References

7.9.22.1 General

Each curve, surface, or topological entity within an individual topological context is assigned an identifier
which can be used to refer to it from other entities within the same topological context.

The first reference to an entity stores the actual data and generates an identifier for that entity. Subsequent
references to that entity store only the identifier.

Note that when the actual data is stored, the first entry is an Unsignedinteger which indicates the type of data

stored. PRC_TYPE_ROOT (0) is used to indicate that the entity corresponds to a NULL pointer and no
additional data is saved. Otherwise, the integer will be one of the subtypes of curve, surface, or topology.

7.9.22.2 PtrCurve

If the Boolean flag is TRUE, the actual curve data is stored. Otherwise, the identifier of the curve is stored.
The only legal curves are those represented by the base class PRC_TYPE_CRV.

Required or Option Data Type Data Description
If TRUE actual entity data
Required Boolean stored; else FALSE (i.e.

identifier of the entity is
stored)

© IS0 2008 — All rights reserved 151

Option: TRUE

PRC_TYPE_CRV

The actual data for the stored
entity.

Option: FALSE

Unsignedinteger

Identifier of stored entity

7.9.22.3 PtrSurface

If the Boolean flag is TRUE, the actual surface data is stored. Otherwise, the identifier of the surface is stored.
The only legal surfaces are those represented by the base class PRC_TYPE_SURF.

Required or Option Data Type Data Description
If TRUE actual entity data
Required Boolean stored; else FALSE (i.e.
q identifier of the entity is
stored)
Option: TRUE PRC_TYPE_SURF The actual data for the stored

entity.

Option: FALSE

Unsignedinteger

Identifier of stored entity

7.9.22.4 PtrTopology

If the Boolean flag is TRUE, the actual topological entity is stored. Otherwise, the identifier of the topological

entity is stored. The only legal
PRC_TYPE_TOPO.

topological entities are

represented by the base class

Required or Option Data Type Data Description
If TRUE actual entity data

Required Boolean _storefii else FALSE (|'.e._
identifier of the entity is
stored)

Option: TRUE PRC_TYPE_TOPO The actual data for the stored

entity.

Option: FALSE

Unsignedinteger

Identifier of stored entity

152

© ISO 2008 — All rights reserved

7.10Curve

7.10.1 Entity Types

Type Name

Type Value

Referenceable

PRC_TYPE_CRV

PRC_TYPE_ROOT + 10

PRC_TYPE_CRV_Base

PRC_TYPE_CRV + 1

PRC_TYPE_CRV_Blend02Boundary

PRC_TYPE_CRV +2

PRC_TYPE_CRV_NURBS

PRC_TYPE_CRV + 3

PRC_TYPE_CRV_Circle

PRC_TYPE_CRV + 4

PRC_TYPE_CRV_Composite

PRC_TYPE_CRV +5

PRC_TYPE_CRV_OnSurf

PRC_TYPE_CRV + 6

PRC_TYPE_CRV_Ellipse

PRC_TYPE_CRV + 7

PRC_TYPE_CRV_Equation

PRC_TYPE_CRV +8

PRC_TYPE_CRV_Helix01

PRC_TYPE_CRV +9

PRC_TYPE_CRV_Hyperbola

PRC_TYPE_CRV + 10

PRC_TYPE_CRV_lIntersection

PRC_TYPE_CRV + 11

PRC_TYPE_CRV_Line

PRC_TYPE_CRV + 12

PRC_TYPE_CRV_Offset

PRC_TYPE_CRV +13

PRC_TYPE_CRV_Parabola

PRC_TYPE_CRV + 14

PRC_TYPE_CRV_PolyLine

PRC_TYPE_CRV + 15

PRC_TYPE_CRV_Transform

PRC_TYPE_CRV + 16

7.10.2 PRC_TYPE_CRV

Abstract type for curves.
7.10.3 PRC_TYPE_CRV_Base

7.10.3.1 General

Abstract type for all geometric curves. The following data is stored for all curve types.

© 1SO 2008 — All rights reserved

7.10.3.2 ContentCurve

ContentCurve provides additional information about a curve such as its name and attributes, how it extends
past its boundary (start and end points), and if it is a 2D or 3D curve.

Is_3D_flag: this flag is set toTRUE if the curve is a 3D curve; otherwise it is false. If a curve has a
transformation, this flag is used to determine if it a 2D transformation or a 3D transformation (See 7.4.11)

Required or Option Data Type Data Description
Required BaseGeometry Optional geometric information
Required Unsignedinteger Indicates how the curve is

extended; see 7.9.10

Is_3D flag; TRUE if the curve is 3D,

Required Boolean otherwise FALSE

7.10.4 PRC_TYPE_CRV_Blend02Boundary

This entity represents a U iso-parametric curve of a Blend02 surface (along its center curve direction) at either
the surfaces v minimum or v maximum value. The parameterization of the curve is inherited from the Blend02
surface.

blend represents the Blend02 surface and must not be NULL; it must be of type
PRC_TYPE_SURF_Blend02.

bound indicates which blend U iso-parametric boundary is used:
e 0 represents the first blend bound (v minimum).
e 1 represents the second blend bound (v maximum).

Bounding_surface is the bounding surface that the Blend02Boundary curve lies on.
Sense_of_bounding_surface is equal to the sense of the bounding surface used in the intersection curve.

A Blend02Boundary curve is always a 3D curve (i.e. is_3d must be true).

A Transformation positions the curve in model space. This transformation is capable of translation, rotation,
and scaling. Only the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

A Parameterization enables a reparameterization and trim of the curve.

154 © 1SO 2008 — All rights reserved

A Blend02Boundary curve can also be considered to be the intersection between one of the bounding
surfaces of the blend and a construction surface, which is an implicit surface intersecting the blend and is
orthogonal to the blend surface along its bounding curve. Since the shape of this surface is not significant for
the curve's geometry, it is not described.

In practice, a Blend02Boundary curve is created as an intersection curve but is interpreted as an iso curve on
a Blend02 surface. The parameters of the intersection curve which are calculated during the construction
process are saved are described below (see 7.10.13 for a description of the crossing points).
intersection_order is TRUE if the first intersection surface is the implicit surface and the second one is the
bounding surface; otherwise it is FALSE.

number_of_crossing_points and crossing_point_positions give an approximation to the curve through an
ordered set of spatial positions.

chordal_error is an estimate of the maximum distance between the curve and the set of segments given by
the array of crossing points.

angular_error is the maximum angle between the tangents of two sequential crossing points.
bounding_surface is the adjacent surface.

base_parameter is the parameter at the first crossing point.

base_scale is the scale at the first crossing point.

Start_limit_point and end_limit_point define the bounded portion of the curve; each point is further

described by start_limit_type and end_limit_type (see 7.10.13.3).

The evaluation formula at a parameter value on a Blend02Boundary curve is

Calculate the implicit_parameter from the given parameter using this curves's Parameterization data.
If (bound == 0)

v = minimum V value of the blend surface
Else

v = maximum V value of the blend surface

XYZ = blend.evaluate(implicit_parameter, v)

© IS0 2008 — Al rights reserved 155

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_CRV_Blend02Boundary

Required ContentCurve Common curve data

Required Transformation E?T:lzl;oglrzzg(:;::ts;t:/:gicurve

Required Parameterization Redefine the parameterization

Required PtrSurface Blend surface must be of type
PRC_TYPE_SURF_Blend02

Required Integer Bound

Required Unsignedinteger Number of crossing points

156 © 1SO 2008 — All rights reserved

Required ArrayOf [Vector3d] Crossing point positions
Required Double Chordal error

Required Double Angular error

Required PtrSurface Bounding surface
Required Boolean Sense of bounding surface
Required Boolean Intersection order
Required Boolean Sense of intersection curve
Required Double Base parameter

Required Double Base scale

Required Vector3d Starting limit point
Required Unsignedinteger Starting limit type
Required Vector3d Ending limit point
Required Unsignedinteger Ending limit type

7.10.5 PRC_TYPE_CRV_NURBS

7.10.5.1 General

This class represents a non-uniform rational bspline curve. The curve may be either 2D or 3D and it may be

either rational or non-rational.

A NURBS curve is defined by the following data:

U is the knot vector

d is the degree of the curve and is restricted to the range 1 <= degree <= 25
P is an array of control points.
Np (the number of control points) = highest_index_of_control_points + 1

o the knots must be a non-decreasing sequence , that is, U[i] <= U[i+1]

o The number of times a knot value u occurs in the knot vector is called its multiplicity; knot
values are compared (to determine multiplicity) by : U[i+1] <= nextafter(U[i],DBL_MAX),
nextafter being the IEEE-754 standard function returning the next representable neighbor of a

double-precision floating point (see Bibliography).

o multiple end knots are required; for non-periodic curves, the multiplicity of the end knots is

degree+1.

o Interior knots may have multiplicity up to degree+1. Thus, the interior of NURBS curves may
be CO or G1 for instance.
o knot_type must be set in the EPRCKnotType range value

© ISO 2008 — Al rights reserved

157

e Nu (number of knots in the knot vector) = highest_index_of_knots + 1; it must satisfy Nu=d + Np +

1

e Rational is TRUE if the curve is rational and has an optional array of weights
e W is an optional weight at each control point; W(i) must be within [0.001, 1000]; all the coordinates

X,y,z are weighted.

e curve_form must be set in the EPRCBsplineCurveForm range value.

The evaluation formula at a parameter value on a Nurbs curve is

The curve C(u) at a parameter value u is given by:

K
c(u) = zizoWiPiNi(u)

Uid,e. Ui

Where
k+1 = number of control points,
P; = control points,
Wi = weights,
d = degree.

N; are the normalized B-spline basis functions of degree d defined on the knot set:

> o WiN;(u)

Ujsr >= U (i.e. non-decreasing).

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_CRV_NURBS

Required ContentCurve Common curve data

Required Boolean Rational is TRUE if this is a rational
NURBS curve; else FALSE

Required Unsignedinteger d is the degree of curve

Required Unsignedinteger highest_index_of_control_points

Required Unsignedinteger highest_index_of_knots

Required ArrayOf P is an array of control points

158 © 1SO 2008 — All rights reserved

[ControlPointsNurbsCrv]

defining curve.

Required ArrayOf [Double] U is an array of knots
Required Unsignedinteger Knot_type (EPRCKnotType)
Required Unsignedinteger Curve_form

(EPRCBsplineCurveForm)

7.10.5.2 ControlPointsNurbsCrv

Required or Option Data Type Data Description

Required Double X coordinate of control point

Required Double Y coordinate of control point

OPTION: is_3d TRUE Double Z coordinate of control point;
the Boolean flag is_3d comes
from the ContentCurve data

OPTION: is_rational TRUE Double W coordinate of control point

7.10.5.3 EPRCKnotType

This enumeration is used to characterize a knot vector.

NOTE: this value is currently unused and should be set to KEPRCKnotTypeUnspecified.

Value Type Name Type Description
0 KEPRCKnotTypeUniformKnots Uniform knot vector
1 KEPRCKnotTypeUnspecified Unspecified knot type
2 KEPRCKnotTypeQuasiUniformKnots Quasi-uniform knot vector
3 KEPRCKnotTypePiecewiseBezierkKnots Extrema with multiplicities of degree + 1

7.10.5.4 EPRCBsplineCurveForm

This enumerated type defines the possible NURBS curve forms.

NOTE: this value is currently not used and should be set to KEPRCBsplineCurveFormUnspecified.

© ISO 2008 — Al rights reserved

159

Value

Type Name

Type Description

0 KEPRCBSplineCurveFormUnspecified Unspecified curve form
1 KEPRCBSplineCurveFormPolylinel Polygon

2 KEPRCBSplineCurveFormCircularArc Circular arc

3 KEPRCBSplineCurveFormEllipticArc Elliptical arc

4 KEPRCBSplineCurveFormParabolicArc Parabolic arc

5 KEPRCBSplineCurveFormHyperbolicArc Hyperbolic arc

7.10.5.5 EPRCExtendType

This enumerated type defines the possible methods for curve

either C or G continuous.

and surface extentions. Extensions may be

The first bit is reserved for future use and must be set to 0 in any variable representing this type

Value | Type Name Type Description

0 KEPRCExtendTypeNone Discontinuous position

2 KEPRCExtendTypeExtl Same as KEPRCExtendTypeClnfinity

4 KEPRCExtendTypeExt2 Same as KEPRCExtendTypeG1R for
surface and KEPRCExtendTypeG1l for
curve

6 KEPRCExtendTypeG1 Continuous in direction but not
magnitude of first derivative

8 KEPRCExtendTypeG1R Surface extended with a ruled surface
that connects with G1 continuity

10 KEPRCExtendTypeG1_G2 Extended by reflection, yielding a G2
continuous extension

12 KEPRCExtendTypeClnfinity Unlimited continuity

7.10.6

PRC_TYPE_CRV_Circle

A cannonical circle is defined by its radius and lies on the XY plane centered at the origin. It is parameterized
in radians on the interval [0.0, 2*Pi] where 0.0 lies on the x-axis and the mapping is defined by the right-hand

rule relative to the z-axis normal to the plane of definition.

160

© ISO 2008 — All rights reserved

A Transformation positions the curve in model space. This transformation is capable of translation, rotation,

and scaling. Only the following flags are acceptable (see section 7.4.11)

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

A Parameterization enables a reparameterization and trim of the circle.

The evaluation formula at a parameter value on a circle is

Calculate the implicit_parameter from the given parameter using this circle's

Parameterization data.
X = Radius * cos(implicit_parameter);
Y = Radius * sin(implicit_parameter);

Z=0.0

The following examples illustrate possible uses of the Parameterization class:

To specify the interval in radians, set Coeff_a to 1.0, Coeff_b to 0.0, and interval to [0.0,2.0* Pi].

These parameter values specify an identity conversion.

To specify the interval in degrees, set Coeff_a to P1/180, Coeff_b to 0.0, and interval to [0.0,

360.0]. Coeff_a is the ratio of radians to degrees.

To reparameterize the circle so the parameter values are in the interval [0.0, 1.0], set Coeff_a to

2.0 * Pi, Coeff_b to 0.0 and interval to [0.0, 1.0]

Example of a circular arc

© ISO 2008 — Al rights reserved

161

t1

Z

Comment [dgh1]: This is a replacement drawing in
vector format. It is the prototype for all future drawings. It

/ can be scaled to any size.

| Comment [vvz2]: Yes vectorial drawings are really
| better. As it is a prototype, we should take care of
|| proportions and perspective effects. In the circle case, we

can see that the radius R is more or less as long as the
vector Y wheras along the X axis the radius seams to be
more than 2 times shorter. (we assume that X,Y,Z are
unit vectors.)

Comment [FC3]: Did you take this remark into account
in subsequent drawings ?

Comment [dgh4]: Yes. This has been forwarded.

e

In the above example, the circular arc is in the XY plane (and therefore has an identity transformation), has
radius R, and is restricted to the [t0, t1] interval

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_CRV_Circle

Required ContentCurve Common curve data
Transformation positioning

Required Transformation circle in model coordinate
system

Required Parameterization Redefine the parameterization

Required Double Radius

7.10.7 PRC_TYPE_CRV_Composite

This represents a composite curve consisting of one or more subcurves.

The following restrictions apply:

e Each subcurve must be of the same dimensionality as the composite (i.e. all 2D or all 3D).

e The subcurves must define a piecewise continous curve, that is, they must define a GO continuous

curve.

162

© ISO 2008 — All rights reserved

A Transformation positions the composite curve in model space. This transformation is capable of translation,
rotation, and scaling. Only the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

A Parameterization enables a reparameterization and composite curve.
The implicit parameterization of the composite is the interval [0.0, NumberOfSubCurves]. The subinterval from

[i, i+1] corresponds to the ith subcurve either in the same or opposite direction according to the sense of the
composite curve.

© IS0 2008 — Al rights reserved 163

To evaluate a composite curve at a parameter value:

Calculate the implicit_parameter from the given parameter using this composite curve's
Parameterization data. The implicit_parameter must lie in the interval[0.0,
NumberOfSubCurves].

Find the sub-interval that the implicit_parameter lies in. Say it lies in the ith subinterval [i,

Else

i+1], that is, i <= implicit_parameter <=i + 1.
Get the interval defining the ith SubCurve. Say it is the interval [a, b].
Calculate delta = implicit_parameter — i;
If the sense of the ith SubCurve is the same as the sense of the composite

Parameter_OnSubCurve = a + delta * (b-a)

Parameter_OnSubCurve = b — delta * (b-a)

Position = SubCurve.evaluate(Parameter_OnSubCurve)

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_CRV_Composite

Required ContentCurve Common curve data

Required Transformation Transformation positioning
composite curve in model
space

Required Parameterization Define parameterization

Required Unsignedinteger Number of subcurves

Required ArrayOf [CompositeSubCurve] | Array of subcurves comprising
the composite

Required Boolean TRUE if the composite curve is
closed; else FALSE

7.10.7.1 CompositeSubCurve

A subcurve of a composite curve consists of a pointer to the definition of the subcurve and a flag indicating if
the subcurve is in the same direction as the composite curve (TRUE) or in the opposite direcection (FALSE).

164

© ISO 2008 — All rights reserved

Required or Option Data Type Data Description

Required PrtCurve A subcurve in the composite

TRUE if the subcurve is in the
same direction as the
composite curve; FALSE if it is
in the opposite direction

Required Boolean

7.10.8 PRC_TYPE_CRV_OnSurf
This represents a 3D curve defined as a UV curve lying in the domain of a surface.

The specified domain is currently ignored and the underlying surface domain is used to define the domain of
the surface that the UV curve must lie within.

A Transformation positions the curve in model space. This transformation is capable of translation, rotation,
and scaling. Only the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_|dentity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

A Parameterization will enable this curve to be reparameterized and trimmed.

The tolerance is used internally but does not take part of the definition of the curve on surface. It indicates an
appropriate tolerance that can be used to obtain a “representative” 3D NURBS approximation of the curve to
aid in various operations. If not known it must be set to 0.0. The unit of this tolerance is the same as that used
to store CrvOnSurf Data. See Section 5.7.

To evaluate this curve at a parameter value:

Calculate the implicit_parameter from the given parameter using this CurveOnSurf's
Parameterization data.

UV_position = UV_curve.evaluate(implicit_parameter)

XYZ = Surface.evaluate(UV_position)

Required or Option Data Type Data Description

© IS0 2008 — Al rights reserved 165

Required Unsignedinteger PRC_TYPE_CRV_onSurf

Required ContentCurve Common curve data

Required Transfomation Postition curve in model space

Required Parmeterization Define parameterization and
trimming information

Required Double Tolerance; default is 0.0

Required PtrCurve UV curve in parameter domain
of surface; this must be a 2D
curve in the UV space of the
surface.

Required PtrSurface Surface the curve lies on

Required Domain UV domain on the surface; this

is currently ignored and the
surface domain is used

7.10.9 PRC_TYPE_CRV_Ellipse

A cannonical ellipse is centered at the origin with radius Rx along the x-axis and radius Ry along the y-axis
and lies in the XY-plane. It is parameterized in radians on the interval [0.0, 2.0*Pi] with 0.0 on the positive x-
axis and the mapping is defined by a right-hand rule about the z-axis normal to the plane of definition.

A Transformation positions the curve in model space. This transformation is capable of translation, rotation,

and scaling. Only the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

A parameterization will enable the ellipse to be reparameterized and trimmed.

The evaluation formula at a parameter value on an ellipse is

166
Z=0.0

Calculate the implicit_parameter from the given parameter using this ellipse's
Parameterization data.

X = Rx * cos(implicit_parameter);

Y = Ry * sin(implicit_parameter);

hts reserved

Example of an elliptic arc

1

RY

In this example, the ellipse is in the XY plane (and therefore has an identity transformation), with radii Rx and
Ry and is restricted to the [tO , t1] interval. Assuming Coeff_a is 1.0 and Coeffb 0.0 (which indicates a
parameterization in radians), then t0=0 and t1=Pi/2, tO corresponds to the Cartesian coordinates (Rx,0,0) and

t1 to (0,Ry,0).

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_CRV_Ellipse

Required ContentCurve Common curve data

Required Transformation Position ellipse into model
space

Required Parameterization Define parameterization and
trimming information

Required Double Radius along x axis

Required Double Radius along y axis

© ISO 2008 — Al rights reserved

167

7.10.10 PRC_TYPE_CRV_Equation

This defines a curve by 1D mathematical functions in X, Y, and optionally, Z (see 7.12.3).

A Transformation positions the curve in model space. This transformation is capable of translation, rotation,

and scaling. Only the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_|dentity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

A parameterization will enable the curve to be reparameterized and trimmed.

The evaluation formula at a parameter value on this curve is

Parameterization data.

If (is_3D)

Else

Z=0.0

Calculate the implicit_parameter from the given parameter using this curve equation's

X = X_Function.evaluate(implicit_parameter)

Y = Y_Function.evaluate(implicit_parameter)

Z =Z_Function.evaluate(implicit_parameter)

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_CRV_Equation
Required ContentCurve Common curve data

Required Transformation Position curve in model space
168 © 1SO 2008 — All rights reserved

Required Parameterization Reparameterize and trim

Required Interval This interval should be set to
the same interval as in the
Parameterization data

Required PRC_TYPE_MATH_FCT_1D X function
Required PRC_TYPE_MATH_FCT_1D Y function
OPTION: is_3D PRC_TYPE_MATH_FCT_1D Z funtion if this is a 3D curve;

the Boolean flag comes from
the ContentCurve field

7.10.11 PRC_TYPE_CRV_Helix01

7.10.11.1 General

This curve type defines a helix defined on the inteval [- infinite_param , infinite_param]. A Helix
is always a 3D curve.

A Transformation positions the helix in model space. This transformation is capable of translation, rotation,
and scaling Only the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_ Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

A Parameterization will enable the helix to be reparameterized and trimmed.
A Type variable indicates which of two kinds of helix is defined by this curve:
e Constant pitch (type 0)
e Variable pitch (type 1)
Each has unique data and a unique evaluation formula.

The Start variable represents a 3D position which is used to define the starting position of the helix.

Required or Option Data Type Data Description

© IS0 2008 — Al rights reserved 169

Required Unsignedinteger PRC_TYPE_CRV_Helix01

Required ContentCurve Common curve data

Required Transformation Position helix in model
coordinate system

Required Parameterization Reparameterize and trim helix

Required Character Type of helix; must be 0 or 1

Required Boolean Trigonometric orientation
(TRUE if helix turns in a
clockwise direction and FALSE if
it turns in a counter-clockwise
direction

Required Vector3d start

OPTION: type =0

TypeOHelixData

Data for type 0 helix

OPTION: type=1

TypelHelixData

Data for type 1 helix

7.10.11.2 TypeOHelixData

A type 0 helix represents a constant radius helix.

The origin and direction define the axis of the helix The axis of the helix is denoted as the z-axis.The
projection of the Start position onto the helix axis determines an origin_on_axis. The x-axis is then defined as
the vector from the origin_on_axis to the start point. This defines a coordinate system orienting and defining

the constant radius helix.

The pitch of the helix is the width of one complete helix turn measured along the helix axis.

The radius evolution is used to define a linear evolution of radius, such as a conic helix.

The following is the evaluation formula for a helix of type O at a parameter value:

170 }else {

if (trignometric_orientation) {

origin = point_3d (origin[0], origin[1], origin[2]);
z_axis = vector_3d (direction[0], direction[1], direction[2]);
origin_on_axis = project_point(origin, z_axis, start);

X_axis = vector_3d(start - origin_on_axis);

radius = x_axis.length + param * radius_evolution;

tmp_point.x = radius * cos(param);

tmp_point.y = radius * sin(param);

tmp_point.z = pitch * param;

tmp_point.x = radius * cos(- param);

eserved

Required or Option Data Type Data Description
Required Double Origin[0]

Required Double Direction[0]
Required Double Origin[1]

Required Double Direction[1]
Required Double Origin[2]

Required Double Direction[2]
Required Double Pitch

Required Doubel Radius_evolution

7.10.11.3 TypelHelixData
For a variable pitch helix (type 1) the following restrictions apply:
e The radius_law must be of type PRC_TYPE_MATH_FCT_1D_Polynom.

e The theta_law must be of type PRC_TYPE_MATH_FCT_1D_Polynom.

e The following values are reserved for future use but must be initialized to the specified values:

e reserved_double_0 must be setto 1.
e reserved_double_ 1 mustbe setto 1.
e reserved_double_2 must be setto 1.

e reserved_double_3 must be setto 0.

© ISO 2008 — Al rights reserved

171

A coordinate system whose
e origin is at the start point
e z-axis is the unit_z vector
e x-axis is the unit_u vector

orients the helix.

The radius and theta laws are used to change the radius according to the angle around the helix.

The z law is used to change the pitch of the helix along its z-axis.

172 © 1SO 2008 — All rights reserved

The following is the evaluation formula for a helix of type 1 at a parameter value:

rl = radius_law.coeffient[0];

r2 = radius_law.coeffient[1];

t1 = theta_law.coeffient[0];

t2 = theta_law.coeffient[1];
param = (param/ (rl +r2)) * 2;

radius =rl + (param-tl)*(r2-rl1)/(t2-t1);

if (trigonometric_orientation) {
tmp_point.x = radius * cos(param);
tmp_point.y = radius * sin(param);
tmp_point.z = z_law.evaluate(param);
}else {
tmp_point.x = radius * cos(- param);
tmp_point.y = radius * sin(- param);

tmp_point.z = z_law.evaluate(param);

x_axis = vector_3d (unit_u[0], unit_u[1], unit_u[2]);
z_axis = vector_3d (unit_z[0], unit_z[1], unit_z[2]);

eval_point = transform_point(start, x_axis, z_axis, tmp_point);

Required or Option Data Type Data Description
Required Double Unit_z[0]
Required Double Unit_u[0]
Required Double Unit_z[1]
Required Double Unit_u[1]
Required Double Unit_z[2]

© 1SO 2008 — All rights reserved

173

Required Double Unit_u[2]

Required Double Reserved_double_0; must be
settol

Required Double Reserved_double_1; must be
settol

Required Double Reserved_double_2; must be
settol

Required Double Reserved_double_3; must be
setto 0

Required PRC_TYPE_MATH_FCT_1D Radius law

Required PRC_TYPE_MATH_FCT_1D z law

Required PRC_TYPE_MATH_FCT_1D Theta law

7.10.12 PRC_TYPE_CRV_Hyperbola

A cannonical hyperbola is centered at the origin with semi_axis length along the x-axis and semi_image_axis
length along the y-axis and lies in the XY-plane. It is parameterized on the interval [-infinite_param,

infinite_param].

A Transformation positions the hyperboa

in model space. This transformation is capable of translation,

rotation, and scaling Only the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

A Parameterization will enable the hyperbola to be reparameterized and trimmed.

The type of hyperbola defines how the parameterization of the hyperbola is to be interpreted:

0

The parameterization must be changed so that param represents the value of the

coordinate on the y-axis

The nominal parameterization formula applies based on cosh and sinh respectively

for x and y;

174

© ISO 2008 — All rights reserved

The evaluation formula for a hyperbola at a parameter value is:

Calculate the implicit_parameter from the given parameter using this hyperbola‘s
Parameterization data.

If this is a type 0 hyperbola {
Eval_point.x = semi_image_axis * sqrt(1.0 + pow(implicit_parameter/semi_axis, 2));
Eval_point.y = implicit_parameter;

} else { // this is a type 1 hyperbola
Eval_point.x = semi_image_axis * cosh(implicit_parameter);

Eval_point.y = semi_axis * sinh(implicit_parameter);
}

Eval_point.z = 0.0;

Example of a hyperbola

|

i _.”, H’b{_r‘-.i h\'l;‘l.-“.‘

Data Description

Required or Option Data Type

© IS0 2008 — All rights reserved 175

Required Unsignedinteger PRC_TYPE_CRV_Hyperbola

Required ContentCurve Common curve data

Required Transformation Position hyperbola in model

coordinate system

Required Parameterization Reparameterize and trim
hyperbola

Required Double Semi_axis

Required Double Semi_axis_image

Required Character Type of hyperbola; must be 0
orl

7.10.13 PRC_TYPE_CRV._lIntersection

7.10.13.1 General

This represents a curve which is the exact intersection of two surfaces.

A Transformation positions the curve in model space. This transformation is capable of translation, rotation,
and scaling. Only the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_|dentity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

A Parameterization will enable the curve to be reparameterized and trimmed.

A piecewise linear approximation to the true intersection curve is defined by a sequence of crossing points
where each of the crossing points lie on the true intersection. At each crossing point the following in known

176

the spacial position of the crossing point.
the UV parameter value of the crossing point on each surface
the unit tangent of the intersection curve at this point (defined as the cross product of the surface

normals (surface 1 cross surface 2) or reversed (surface 2 cross surface 1) depending on the sense
of the intersection curve with an optional sense applied to each surface normal);

© ISO 2008 — All rights reserved

e the parameter value (which should satisfy the parameterization requirements described in 7.10.13.2);
e ascale value (which should satisfy the parameterization requirements described in 7.10.13.2);
The NumberOfCrossingPoints must be sufficient so that evaluation of the curve at a parameter value results in
a unique solution (see evaluation method below). The ChordalError and AngularError are used to indicate
when more crossing points must be added to the definition to ensure a unique solution when evaluating an
intersection curve at a parameter value (see below).

The intersection curve is limited by two points (start_limit_point and end_limit_point) each characterized with a
type of limit (start_limit_type and end_limit_type) as described in 7.10.13.3.

In the case of KEPRClIntersectionLimitTypeTerminator, the limit position is present in the crossing points
array (as the first or last point).

ChordalError is an estimate of the maximum distance between the curve and the set of segments given by the
crossing points array.

AngularError is the maximum angle between the tangents of two sequential crossing points.

parameterization_definition_respected indicates whether the parameters of the crossing points array are
compliant with the parameterization requirements (see 7.10.13.2).

This corresponds to a valid geometry in the sense of the crossing_point_flags, which should be set to
true.

An intersection curve is always a 3D curve (i.e. is_3d must be true).

The evaluation formula for an intersection curve at a parameter value t is:

e If t matches a crossing point parameter, the crossing point position is the intersection curve
point.

e If not, find two consecutive crossing points P1 and P2 such that the parameter t is included
in the interval [t1, t2] (t1= parameter of P1 and t2 = parameter of P2]. The intersection
curve point will be the intersection of surface 1, surface 2 and the plane defined by the
origin O and the normal N where :

O =P1 + [(t-t1)/(t2-t1)] * (P2-P1)
N=P2-P1
In fact, to evaluate a point at a given parameter, an iterative process is used to find the intersection

of the three surfaces : surface 1, surface 2 and the plane defined above (the plane depends on
parameter t).

Hints on how to ensure a good intersection curve definition:

© IS0 2008 — All rights reserved 177

To ensure that there is a unique solution, additional conditions have to be added on crossing point tangent
definition. Theoretically, the tangents of two consecutive points must have angle smaller than 180 degree. In
practice an angle smaller than 40 degree should be used to avoid numerical problems during the computation
of the 3 surfaces intersection. This is the AngularError defined above and should be in radians.

Also to ensure that there is a unique solution, the plane defined above can't cross the intersection curve many
times within the ChordalError associated with the intersection curve. The more crossing points there are, the
smaller the ChordalError will be. Therefore in this case more crossing points have to be added in the
intersection curve definition to avoid such situations.

b
! 2=

) : '._(".} b

Fae B dlartm Pleon L5

€ G ol S Nowmd =X
S IR . Y

'

178 © 1SO 2008 — All rights reserved

!E’,-

s

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_CRV_Intersection

Required ContentCurve Common curve data

Required Transformation Positions curve in model
coordinate system

Required Parameterization Reparameterize and trim curve

Required PtrSurface Surface 1

Required PtrSurface Surface 2

Required Boolean TRUE if sense is the same as
surface 1; FALSE otherwise

Required Boolean TRUE if sense is the same as

surface 2; FALSE otherwise

© 1SO 2008 — All rights reserved

179

Required

Boolean

TRUE if the sense of the
intersection sense is surface 1
cross surface 2; FALSE
otherwise

Required Unsignedinteger Number of crossing points
Required ArrayOf Array of crossing points
[CrossingPointsCrvintersection]

Required Vector3d Start limit point

Required Unsignedinteger Start limit type;
EPRClIntersectionLimitTypes

Required Vector3d End limit point

Required Unsignedinteger End limit type;
EPRClIntersectionLimitTypes

Required Double Chordal error

Required Double Angular error

Required Boolean Parameterization definition

respected

7.10.13.2 CrossingPointsCrvintersection

Each crossing point is described by the following:

The spatial position (crossing_point_position).

The parametric position on surface_1 (crossing_point_uv_1).
The parametric position on surface_2 (crossing_point_uv_2).
The normalized tangent on the curve, crossing_point_tangent, is given by the cross product of two

surface normals, taking into account the senses of surfaces surface_1_sense and surface_2_sense.

Parameter value associated with the crossing point.

e Scale associated with the crossing point.

e The flag must be set to

PRC_INTERSECTION_CROSS_POINT_SURFACEL1 |
PRC_INTERSECTION_CROSS_POINT_SURFACE?2? |
PRC_INTERSECTION_CROSS_POINT_INSIDE_CURVE_INTERVAL

to indicate that

180

o the uv position on surface 1 is filled
e the uv position on surface 2 is filled
e The crossing point is inside the curve interval.

© ISO 2008 — All rights reserved

At the i" crossing point, the parameter and scale should adhere to the following Parameterization
Requirements

Tangentl|i]. (Position|i] — Position[i — 1])
Tangent|i]. (Position[i + 1] — Position[i])

Scaleli] = Scale[i — 1]

Parameter|i] = Parameter|i — 1] + scaleli — 1].||Position[i] — Position[i — 1]||

parameter[0] is the parameter at first crossing point and the minimum parameter of the curve interval;
scale[0] should be set to 1.0 if not known.

This method is useful to get a more or less curvilinear parameterization without too much computation
(function integration for example...).

The intersection curve has a boolean flag to indicate if these parameterization requirements are met
The . (period) in the scale formula is the dot product while in the parameter formula it is simple multiplication.

Between two crossing points, the parameter of an intersection curve point is given by its projection onto the
previous crossing point tangent line.

Required or Option Data Type Data Description

Required Vector3d Crossing point position
Required Vector2d Crossing point uv on surface 1
Required Vector2d Crossing point uv on surface 2
Required Vector3d Crossing point tangent
Required Double Crossing point parameter
Required Double Crossing point scale

Required Character Crossing point flags

7.10.13.3 EPRClntersectionLimitType

This enumeration is used to classify an endpoint of a bounded portion (curve segment) of an intersection
curve defined by the intesection of two surfaces (PRC_ TYPE_CRV_lIntersection). This classification takes
into consideration the nature and relationship of the surface normals of the point on each of the two surfaces
as well as the shape of the intersection curve (finite/infinite, open/closed) .

The endpoint is classified KEPRCIntersectionLimitTypeTerminator if one (or both) of the surface normals is
degenerate or if both of the surface normals are well defined but the normals are collinear.

© IS0 2008 — All rights reserved 181

Example: Consider the following intersection of two cylinders. The intersection point where the two surface
normals become collinear will be a limit point of type Terminator which is used to define two separate
intersection curves (i.e. each branch of the intersection results in an intersection curve).

The endpoint is classified KEPRCIntersectionLimitTypeBoundary if the intersection curve is used as a
center curve of a blend02 surface that becomes degenerate but it is not relevant to the intersection curve.

Example Consider a blend02 surface with a radius that becomes equal to its center curve curvature radius (an
intersection curve).

The endpoint is classified KEPRCIntersectionLimitTypeLimit, if it lies on an infinite intersection curve. In this
case arbitrary endpoints are chosen to limit the curve segment to avoid having an infinite curve.

Example: Consider the intersection of two cylinders which result in two parallel lines. Two endpoints of limit
type Limit are picked to define a finite line segment on each of the branches of the surface/surface intersection.

The endpoint is classified KEPRClIntersectionLimitTypeHelp, if it lies on a finite, closed intersection curve. In
this case an arbitrary point is chosen to represent the end point of the curve segement.

Example: Consider the following intersection of a plane and cone which results in an elliptical intersection
curve. Any point on the intersection curve may be used as the limit point with limit type Help.

182 © 1SO 2008 — All rights reserved

Value

Type Name

Type Description

0 KEPRCiIntersectionLimitTypeHelp Arbitary limit on a closed intersection curve.

1 KEPRCintersectionLimitTypeTerminator Limit where one of the two intersection
surface normals is degenerate or where
they become colinear.

2 KEPRCiIntersectionLimitTypeLimit Artificial limit to avoid an infinite curve.

3 KEPRCintersectionLimitTypeBoundary Limit of the curve if a

PRV_TYPE_SURF_Blend02 surface (that
uses the intersection curve as its center
curve) becomes degenerate.

7.10.14 PRC_TYPE_CRV_Line

The cannonical line is defined along the x-axis. The implicit parameterization is [-infinite_param,
infinite_param] with 0.0 being the origin and positive values along the positive x-axis.

The Transformation can reposition the cannonical representation in model space using a translation, rotation,
and scaling. Only the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

The Parameterization enables the line to be reparameterized and trimmed.

The evaluation formula for a line at a parameter value is:

Calculate the implicit_parameter from the given parameter using this line's

Parameterization data.
X = implicit_parameter;
Y =0.0;

Z=0.0;

© 1SO 2008 — All rights reserved

183

Example of a line segment

Y

In the above illustration, the line is restricted to [t0 , t1] interval

transformation.

on the X vector of its Cartesian

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_CRV_Line

Required ContentCurve Common curve data

Required Transformation Position line in model
coordinate system

Required Parameterization Reparameterize and trim line

7.10.15 PRC_TYPE_CRV_Offset

This represents the offset of a 3D curve following the binormal defined by the tangent of the curve and the

offset plane normal.

The curve must be 3D, that is, the Is_3d Boolean flag of the ContentCurve must be true.

The curve must not have a transformation, that is, the Has_transformation Boollean flag of the Transformation

must be false.

Parameterization must have Coeff a = 1.0, Coeff_b = 0.0, and the interval must lie within the base curve

interval.

184

© ISO 2008 — All rights reserved

You can use an existing offset curve entity as the base curve used to create a new offset curve.

© IS0 2008 — Al rights reserved 185

The evaluation formula for an offset curve at a parameter value is:

Calculate the implicit_parameter from the given parameter using this curves's

Parameterization data.

base_point = base_curve.evaluate(implicit_param)
base_deriv = base_curve.evaluate_derivative(implicit_param)
offset_dir = normalize(base_deriv * offset_plane_normal)

Eval_point = base_point + offset_distance * offset_dir

Where X MY is the cross product of the vectors X and Y

Example of a offset curve

v—

In this example the base curve is offset by a 3D vector V which specifies the combination of the offset plane
normal and the offset distance.

186

© ISO 2008 — All rights reserved

Required or Option Data Type

Data Description

Required Unsignedinteger PRC_TYPE_CRV_Offset

Required ContentCurve Common curve data

Required Transformation Postion offset curve in model
space

Requried Parmeterization Reparameterize and trim curve

Required PtrCurve Base curve to offset

Required Vector3d Offset plane normal; this
should be a unit vector

Required Double Offset distance

7.10.16 PRC_TYPE_CRV_Parabola

A cannonical parabola has its focus at (focal_length, 0, 0), its directrix at x = - focal_length and lies in the XY-

plane. It is parameterized on the interval [-infinite_param, infinite_param)].

A Transformation positions the parabola

in model space. This transformation is capable of translation,

rotation, and scaling Only the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

A Parameterization will enable the parabola to be reparameterized and trimmed.

The type of parabola defines how the parameterization of the parabola is to be interpreted:

0

The parameter represents the value of the coordinate on the x-axis; the y-axis is

the axis of the parabola

The nominal parameterization formula applies; the parameter is proportional to the
value of the coordinate on the y axis; the x-axis is the axis of the parabola

© 1SO 2008 — All rights reserved

187

The nominal evaluation formula for a parabola at param value is:

If type is 1 {
Eval_point.x = focal_length * param * param;
Eval_point.y = 2.0 * focal_length * param;
}else {
param2 = param * param;
p2 = param2/2.0 +
sqrt(param2*param2/4.0 + 16.0*focal_length*focal_length*param2);

param2 = (param < 0.0)sqrt(p2) : -sqrt(p2);
if (param2 < 0)

Eval_point.x =- param2

Eval_point.y =-2.0 * focal_length * sqrt(- param2/ focal_length)
glse
{

Eval_point.x = param2

Eval_point.y =2.0 * focal_length * sqrt(param2/ focal_length)
3

}

Eval_point.z = 0.0

Example of a parabolic arc

188 © IS0 2008 — Al rights reserved

Required or Option Data Type

Data Description

Required Unsignedinteger PRC_TYPE_CRV_Parabola

Required ContentCurve Common curve data

Required Transformation Position curve in model
coordinate system

Required Parameterization Reparameterize and trim curve

Required Double Focal length

Required Character Parameterization type; must be

Oor1l

7.10.17 PRC_TYPE_CRV_PolyLine

7.10.17.1 General

This represents a PolyLine curve defined by a sequence of 2D or 3D points.

The implicit parameterization of a polyline is the interval [0.0, number of points]. The interval [i, i+1]
corresponds to the segment between point[i] and point[i+1]. The curve between consective points is a straight
Added transformation info line.

A Transformation positions the polyline in model space. This transformation is capable of translation, rotation,

and scaling Only the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

A Parameterization will enable the polyline to be reparameterized and trimmed.

Required or Option Data Type Data Description
Required Unsignedinteger PRC_TYPE_CRV_PolyLine
Required ContentCurve Common curve data
Required Transformation Postion curve in model space

© 1SO 2008 — All rights reserved

189

Requried Parmeterization Reparameterize and trim curve

Required Unsignedinteger Number of points in polyline
Required ArrayOf [PolyLinePoint] Array of points defining
polyline

7.10.17.2 PolyLinePoint

Required or Option Data Type Data Description

OPTION: is_3d TRUE Vector3d 3D point; the is_3D Boolean
flag comes from the
ContentCurve

OPTION: is_3d FALSE Vector2d 2D point

7.10.18 PRC_TYPE_CRV_Transform
A Transform curve represents a curve defined by applying a 3D mathematical function to a base curve.
Both the transform curve and the base_curve must be 3D curves.

The Transformation can reposition the curve in model space using a translation, rotation, and scaling. Only
the following flags are acceptable (7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_|dentity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

The Parameterization enables the curve to be reparameterized and trimmed.

The nominal evaluation formula for a transform curve at param value is:

Calculate the implicit_parameter from the given parameter using this transform curve's
Parameterization data.

Tmp_point = base_curve.evaluate(implicit_parameter);
If (math_transformation != NULL)
190 Eval_point =math_transformation.evaluate(tmp_point); bserved

Else

© IS0 2008 — All rights reserved 191

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_CRV_Transform

Required ContentCurve Common curve data

Required Transformation Position curve in model space
Requried Parmeterization Reparameterize and trim curve
Required PtrCurve Base curve

Required PRC_TYPE_MATH_FCT_3D | 3D mathematical transformation to

apply to base curve

7.11Surface

7.11.1 Entity Types

Type Name

Type Value

Referenceable

PRC_TYPE_SURF

PRC_TYPE_ROOT + 75

PRC_TYPE_SURF_Base

PRC_TYPE_SURF + 1

PRC_TYPE_SURF_Blend01

PRC_TYPE_SURF + 2

PRC_TYPE_SURF_Blend02

PRC_TYPE_SURF + 3

PRC_TYPE_SURF_Blend02

PRC_TYPE_SURF + 4

PRC_TYPE_SURF_NURBS

PRC_TYPE_SURF +5

PRC_TYPE_SURF_Cone

PRC_TYPE_SURF + 6

PRC_TYPE_SURF_Cylinder

PRC_TYPE_SURF + 7

PRC_TYPE_SURF Cyldrical

PRC_TYPE_SURF + 8

PRC_TYPE_SURF_Offset

PRC_TYPE_SURF + 9

PRC_TYPE_SURF_Pipe

PRC_TYPE_SURF + 10

PRC_TYPE_SURF_Plane

PRC_TYPE_SURF + 11

PRC_TYPE_SURF_Ruled

PRC_TYPE_SURF + 12

PRC_TYPE_SURF_Sphere

PRC_TYPE_SURF + 13

192

© ISO 2008 — All rights reserved

PRC_TYPE_SURF_Revolution PRC_TYPE_SURF +14
PRC_TYPE_SURF_Extrusion PRC_TYPE_SURF + 15
PRC_TYPE_SURF_FromCurves PRC_TYPE_SURF + 16
PRC_TYPE_SURF_Torus PRC_TYPE_SURF + 17
PRC_TYPE_SURF_Transform PRC_TYPE_SURF + 18
PRC_TYPE_SURF_Blend04 PRC_TYPE_SURF + 19

7.11.2 PRC_TYPE_SURF

Abstract type for surfaces. If this appears in the documentation defining a field in the PRC File, it means that
any surface type may be used.

7.11.3 PRC_TYPE_SURF_Base
7.11.3.1 General
Abstract type for surfaces. The following data is stored for all surface types.

7.11.3.2 ContentSurface

ContentSurface provides additional information about a surface such as its name and attributes and how it
extends past its boundary.

Required or Option Data Type Data Description

Required BaseGeometry Optional geometric information

Indicates how the surface is

Required Unsignedinteger
q & g extended; see EPRCExtendType

7.11.4 PRC_TYPE_SURF_Blend01

A Blend01 surface is defined by three curves, a center curve, an origin curve and an optional tangent curve,
all defined over the same parameter interval. If the tangent curve is not defined (NULL), the first derivative of
the origin curve is used instead. The implicit parameterization of a Blend01 surface is [0, 2*Pi] x
[center_curve.interval.min, center_curve.interval.max].

A Blend01 surface represents a variable radius pipe surface centered on the center curve with the origin curve
defining both the radius and 0.0 location of the u parameter and the tangent curve defining the normal of the
cross section plane of the Blend01 surface along the center curve.

A Transformation can reposition the surface in model space using a translation, rotation, and scalingOnly the
following flags are acceptable (see 7.4.11).

© IS0 2008 — Al rights reserved 193

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_|dentity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

A UVParameterization enables the surface to be reparameterized and trimmed.

The following diagram illustrates the relationship between the curves defining the Blend01 surface.

To evaluate a Blend01 surface at a parameter value:

Calculate the implicit_parameter from the given parameter using this surface's UVParameterization
data.

R(implicit_param_v) = origin_curve(implicit_param_v) - center_curve(implicit_param_v)

XYZ = origin_curve(implicit_param_v) + cos(implicit_param_u) * R(implicit_param_v) +
sin(implicit_param_u) * [tangent_curve(implicit_param_v) ~ R(implicit_param_v)]

(where is the cross product)

If the tangent curve is NULL, use the unitized first derivative of origin curve instead of the tangent
curve.

194

© ISO 2008 — All rights reserved

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_SURF_Blend01

Required ContentSurface Common surface data

Required Transformation Position surface into model
space

Required UVParameterization Define parameterization and

trimming information

Required PtrCurve Center curve; must not be
NULL

Required PtrCurve Origin curve; must not be NULL

Required PtrCurve Tangent curve; may be NULL in

which case the first derivative
of the center curve is used as
the tangent curve.

7.11.5 PRC_TYPE_SURF_Blend02

A Blend02 surface is an exact rolling ball blend defined by rolling a ball of a constant radius along a center
curve while maintaining tangential contact with two bounding surfaces (or curves in the case of a “cliff
hanging"“ blend). A point on the center curve is projected onto the two bounding geometries and the Blend02
surface is defined by the circular arc between these two points (from pointl to point2).

The Blend02 surface is defined by

e Arolling ball center curve (center_curve) which defines the u parameter of the surface.

e Afirst bounding surface or a first bounding curve (bound_surface 1 or bound_curve 1). Either
bound_surface 1 or bound_curve 1 may be given and the other must be NULL.

e A second bounding surface or a second bounding curve (bound_surface 2 or bound_curve 2).).
Either bound_surface 2 or bound_curve 2 may be given and the other must be NULL.

e Aradius and two senses. Radius 1 and radius 2 have the same absolute value but may have different
signs. A positive sign indicates that the blend is on the side of the surface normal after taking into
account the senses of the surfaces bound_surface_sense 1 and bound_surface_sense 2. A negative
sign indicates that the blend is on the opposite side as the bounding surface normal.

e Two instances of cliff_supporting_surface. If one of the bounds is a curve, the surface is a cliff edge
blend and its two supporting surfaces are the surfaces of the faces adjacent to the cliff edge (NULL
otherwise).

e The type of parameterization (parameterization_type):

o Oindicates that the v parameter is zero at the first bound and one at the second bound.
o 1lindicates that the v parameter is zero at the first bound and the angular value, in radians, at
the second bound.

e The implicit parameterization is

o [center_curve.interval.min, center_curve.interval.max] x [0, 1] if the parameter_type is 0
o [center_curve.interval.min, center_curve.interval.max] x [0, 2*Pi] if the parameter_type is 1

© IS0 2008 — Al rights reserved 195

The Transformation can reposition the surface in model space using a translation, rotation, and scaling. Only
the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_|dentity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

The UVParameterization enables the surface to be reparameterized and trimmed.

A boundary surface may be replaced by a boundary curve, in that case, known as “cliff edge blending”, the
center curve point must be projected onto this curve and not onto the missing boundary surface.

To evaluate a Blend02 surface at a parameter value:

Calculate the implicit_parameter from the given parameter using this surface's UVParameterization
data.

Radius is the absolute value of radius 1 and radius 2
P1 = center(u) projected onto Bound Surface 1 (or Bound Curve 1)
P2 = center(u) projected onto Bound Surface 2 (or Bound Curve 2)

Where this is a perpendicular projection and the distance between Center(u) and P1 (and P2) must
equal the blend radius

X(u) = (P1 - center(u)) / || P1— center(u) ||

Y(u) = (P2 - center(u)) / || P2 - center(u) ||

A(u) = angle between X(u) and Y(u)

Ya(u) = ((X(U) A Y(U)) A X)) /| (C(X() A Y () A X)) ||

So that X(u) . Y,(u) = 0 and Y,(u) is a unit vector

If (parameter_type ==0)

XYZ = center(u) + Radius * (cos(A(u) * v) * X(u) + sin(A(u)*v) * Y(u))
Else

XYZ = Center(u) + Radius * (cos(v).X(u) + sin(v).Y(u))
196 where

e uandv mean implicit_param_u and implicit_param_v in all descriptions

Piz la () mogdd on Bound Sudjoce 1
pj = cﬂﬁb’h(#) /fwz,chJ o, QMASMQ&M..Z.

—E) P1 - [:,..5\(«.) _Y_;&): ?}_ - C;Mtul(az)
PGBl | B2 - Gl GOl

£ —_—
A(M) =4 AM%D{ B)«{EW'”M X () ancl b4 at}
ETARIPRD, (& Bl X(a). Yale) =0 mTJ

ancl A(M):m m:)j;mmq
! XYZ = Gabafe) + Radiws . ((@(AGD) X6
son(AC).w) W))

© ISO 2008 — All rights reserved 197

198 © IS0 2008 — Al rights reserved

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_SURF_Blend02

Required ContentSurface Common surface data

Required Transformation Position surface into model
space

Required UVParameterization Define parameterization and
trimming information

Required PtrSurface Bound Surface 0

Required PtrCurve Bound curve 0

Required PtrSurface Bound surface 1

Required PtrCurve Bound curve 1

Required PtrCurve Center curve

Required Boolean Center curve sense

Required Boolean Bound surface 0 sense

Required Boolean Bound surface 1 sense

Required Double Radius 0

Required Double Radius 1

Required PtrSurface Cliff supporting surface 0

Required PtrSurface Cliff supporting surface 1

Required Character Parameterization type

7.11.6 PRC_TYPE_SURF_Blend03

A Blend03 surface is a fillet surface defined by four curves: a center curve, two rail curves, and an angle curve
which defines the V parameterization of the surface. All curves are quintic splines defined over the same

nodal vector (Number_of_elements, Parameters and Multiplicities).

A center_curve, rail_curve_1, and rail_curve2 are defined using point, tangent, and second derivative data
from Number_of_element entries in the Points, Tangents, and SecondDerivative arrays:

e center_curve uses data at indicies i*3 + 0;

© 1SO 2008 — All rights reserved

199

e rail_curve_1 uses data at indicies i*3 + 1,
e and rail_curve_2 uses data at indicies i*3 + 2.

where 0 <= i <= Number_of_elements.

A rail2_anglesV_curve is defined using the data in the arrays Rail2AnglesV, Rail2DerivativesV, and
Rail2SecondDerivativesV. This curve defines the V parameterization of the Blend03 surface by controlling the
V parameterization along the isoparametric U curves.

Each isoparametric U curve is a circle defined on a plane centered on a point evaluated on the

center_curve, where the point on rail_curve_1 evaluated at the same parameter gives the x-axis, and

the point on rail_curve_2 gives the y-axis. For each circle, rail_curve_1 corresponds to Parameter[0], and the
parameter corresponding to the point on rail_curve_2 is found using the angle curve function
rail2_anglesV_curve. The same parameter is divided by Rail2ParameterV.

The implicit parameterization is [Parameter[0], Parameter[Number_of_elements - 1]] x [trim_v_min,
trim_v_max].

If trim_v_max is less than trim_v_min, the V parameterization is set to [0, 1].

The Transformation can reposition the surface in model space using a translation, rotation, and scaling. Only
the following flags are acceptable (see section Transformation)

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

The UVParameterization enables the surface to be reparameterized and trimmed.

200 © IS0 2008 — Al rights reserved

To evaluate a Blend03 surface at a parameter value:

Calculate the implicit_parameter from the given parameter using this surface's UVParameterization
data.

X(u) = (rail_curve_1(u) — center_curve(u)) / || rail_curve_1(u) — center_curve(u) || (so that X(u) is
a unit vector)

Y(u) = rail_curve_2(u) — center_curve(u)

Yo(u) = [X(U)NY () 1°X(u) /] [X(u)™NY (u) 1°X(u) || (so that X(u).Y,(u)=0 and Y,(u) is a unit vector)
A(u) = rail2_anglesV_curve(u) / Rail2ParameterV

Radius(u) = || rail_curve_2(u) - center_curve(u) ||

XYZ = center _curve (u) + Radius(u) * (cos(A(u)*v).X(u) + sin(A(u)*v).Y,(u))

Where
e uandv mean implicit_param_u and implicit_param_v.
e || X|| is the length of vector X

e X7Y is the cross product of X and Y vectors.

The following values are reserved for future use:

reserved_int[0] should be set to 5.

reserved_int[1] should be set to 0.

reserved_int[2] should be set to 0.

reserved_int[3] should be set to number_of_element.

reserved_int[4] should be set to 0.

reserved_int[5] should be set to 1.

reserved_chars_0 should be set to 1.

reserved_chars_1 should be set to 0.

reserved_chars_2 should be set to 0.

reserved_supplemental_doubles[i] and number_of_supplemental_doubles should be set to 0.

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_SURF_Blend03

Required ContentSurface Common surface data

Required Transformation Position surface into model

©1SO

2008 — All rights reserved

space

Required UVParameterization Define parameterization and
trimming information

Required Integer Number_of_elements

Required ArrayOf [Double] Parameters

Required ArrayOf [Integer] Multiplicities

Required ArrayOf [Vector3d] Array of Points

Required ArrayOf [Double] Array of Rail2AnglesV

Required ArrayOf [Vector3d] Array of Tangents

Required ArrayOf[Double] Array of Rail2DerivativesV

Required ArrayOf [Vector3d] Array of SecondDerivatives

Required ArrayOf [Double] Array of
Rail2SecondDerivativesV

Required Double Rail2Parameter V

Required Double Trim v min

Required Double Trim v max

Required Integer[6] Reserved_int

Rquired Character Reserved_char_0

Rquired Character Reserved_char_1

Rquired Character Reserved_char_2

Required Integer Number of reserved
supplimental doubles

Required ArrayOf [Double] Reserved supplimental doubles

7.11.7 PRC_TYPE_SURF_NURBS

7.11.7.1 General

This class represents a non-uniform rational bspline surface.

202

© ISO 2008 — All rights reserved

A NURBS surface is defined by the following data:

Du is the degree of the surface in u and is restricted to the range 1 <= degree <= 25
Dv is the degree of the surface in v and is restricted to the range 1 <= degree <= 25
P is a two dimensional array of control points.
Npu (number of control points in u) = highest_index_of_control_points_in_u + 1
Npv (number of control points in v) = highest_index_of_control_points_in_v + 1
Ku is the knot vector in u
o the knots must be a non-decreasing sequence , that is, Ku[i] <= Kuli+1]
o multiple end knots are required; for non-periodic surfaces, the multiplicity of the end knots is
Du+1.
o Interior knots may have multiplicity up to Du+1.
Nku (number of knots in the u knot vector) = highest_index_of_knots_in_u + 1; it must satisfy Nku
=Du + Npu + 1.
Kv is the knot vector in v
o the knots must be a non-decreasing sequence , that is, Kv[i] <= Kv[i+1]
o multiple end knots are required; for non-periodic surfaces, the multiplicity of the end knots is
Dv+1.
o0 Interior knots may have multiplicity up to Du+1.
Nkv (number of knots in the v knot vector) = highest_index_of_knots_in_v + 1; it must satisfy Nkv =
Dv + Npv + 1.
knot_type must be set in the EPRCKnotType range value
Rational is TRUE if the surface is rational and has an optional array of weights
W is an optional weight at each control point; W(i,j) must be within [0.001, 1000]; all the coordinates
X,y,z are weighted.
surface_form must be set in the EPRCSplineSurfaceForm range value.

The evaluation formula at a parameter value on a Nurbs surface is

The surface S(u,v)) at a parameter value u and v is given by:

E%u N,ngijPijNi(U)Nj(V)
S(u’ V) - 7Npu Jinv
Yico 2ujmo WiNi(UN;(V)
Where
Npu = number of control points in u
Npv = number of control points in v
Pj = control points,
Wi = weights,
Du = degreeinu
Dv = degreeinv

N; are the normalized B-spline basis functions of degree d defined on the knot set:

Uid,...,Uis1 Ui >= U, (i.e. non-decreasing).

©1S0 2008 | 203

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_SURF_NURBS

Required ContentSurface Common surface data

Required Boolean Rational is TRUE if this is a rational
NURBS surface; else FALSE

Required Unsignedinteger Du is the degree of surface inu

Required Unsignedinteger Dv is the degree of surface in v

Required Unsignedinteger highest_index_of_control_points_in_u

Required Unsignedinteger highest_index_of_control_points_in_v

Required Unsignedinteger highest_index_of_knots_in_u

Required Unsignedinteger highest_index_of_knots_in_u

Required 2DimArrayOf P is a two dimensional array of control

[ControlPointsNurbsSurf] | points defining surface.

Required ArrayOf [Double] Ku is an array of knots in u

Required ArrayOf [Double] Kv is an array of knots in v

Required Unsignedinteger Knot_type must be set to a value in
EPRCKnotType

Required Unsignedinteger Surface_form must be set to a value in
EPRCSplineSurfaceForm

7.11.7.2 ControlPointsNurbsSurf

An array of control points for a Nurbs surface are stored in a two dimensional array

For (i=0; i<= highest_index_of_control_points_in u; i++)

For (j=0; j<=highest_index_of_control_points_in_v; j++)

Store the X, y, z and optional w value

204

© ISO 2008 — All rights reserved

Required or Option Data Type Data Description

Required Double X coordinate of control point
Required Double Y coordinate of control point
Required Double Z coordinate of control point
OPTION: is_rational TRUE Double W coordinate of control point

7.11.7.3 EPRCSplineSurfaceForm
This enumerated type defines the possible NURBS surface forms.

NOTE: this value is currently not used and should be set to KEPRCBsplineSurfaceFormUnspecified.

Value Type Name Type Description
0 KEPRCBSplineSurfaceFormPlane Planar surface
1 KEPRCBSplineSurfaceFormCylindrical Cylindrical surface
2 KEPRCBSplineSurfaceFormConical Conical surface
3 KEPRCBSplineSurfaceFormSpherical Spherical surface
4 KEPRCBSplineSurfaceFormRevolution Surface of revolution
5 KEPRCBSplineSurfaceFormRuled Ruled surface
6 KEPRCBSplineSurfaceFormGeneralizedCone Cone
7 KEPRCBSplineSurfaceFormQuadric Quadric surface
8 KEPRCBSplineSurfaceFormLinearExtrusion Surface of extrusion
9 KEPRCBSplineSurfaceFormUnspecified Unspecified surface
10 KEPRCBSplineSurfaceFormPolynomial Polynomial surface

7.11.8 PRC_TYPE_SURF_Cone

This represents a cannonical definition of a conical surface where the axis of the cone lies along the z-axis.
The x-axis represents the 0.0 value of the u parameter interval [0.0, 2* Pi] with positive values counter-
clockwise about the z-axis using the right hand rule. The z-axis represents the v parameter interval [-
infinite_param, infinite_param]. The 0.0 value of the v parameter is indicated by the bottom radius. The semi-
angle is the half angle of the cone in radians.

The implicit parameterization of the cone is [0.0, 2*Pi] x [-infinite_param, infinite_param].

© IS0 2008 — Al rights reserved 205

The Transformation can reposition the surface in model space using a translation, rotation, and scaling. Only
the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

The UVParameterization enables the surface to be reparameterized and trimmed.

To evaluate this surface at a parameter value:

Calculate the implicit_parameter from the given parameter using this surface's

UVParameterization data.

radius= bottom_radius + implicit_param_v * tan(semi-angle)

tmp_point.x = cos(implicit_param_u) * radius
tmp_point.y = sin(implicit_param_u) * radius
tmp_point.z = implicit_param_v

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_SURF_Cone

Required ContentSurface Common surface data

Required Transformation Position surface into model
space

Required UVParameterization Define parameterization and
trimming information

Required Double Bottom radius

Required Double Semi angle in radians

206 © 1SO 2008 — All rights reserved

7.11.9 PRC_TYPE_SURF_Cylinder

This represents a cannonical definition of a cylinder where the axis of the cylinder lies along the z-axis. The x-
axis represents the 0.0 value of the u parameter (radians) interval [0.0, 2* Pi] with positive values counter-
clockwise about the z-axis using the right hand rule. The z-axis represents the v parameter interval [-
infinite_param, infinite_param]. The 0.0 value of the v parameter is at the origin.

The implicit parameterization of the cylinder is [0.0, 2*Pi] x [-infinite_param, infinite_param].

The Transformation can reposition the surface in model space using a translation, rotation, and scaling. Only
the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

The UVParameterization enables the surface to be reparameterized and trimmed.

To evaluate this surface at a parameter value:

Calculate the implicit_parameter from the given parameter using this surface's

UVParameterization data.

tmp_point.x = cos(implicit_param_u) * radius
tmp_point.y = sin(implicit_param_u) * radius
tmp_point.z = implicit_param_v

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_SURF_Cylinder
Required ContentSurface Common surface data

Required Transformation Position surface into model

space

© 1SO 2008 — All rights reserved

207

Required UVParameterization Define parameterization and
trimming information
Required Double Radius

7.11.10 PRC_TYPE_SURF_Cylindrical

This represents a cylindrical surface expressed in cylindrical coordinate system where (R, Theta, h). A base
surface defines the mapping from UV to (R, Theta, h) = (x, y, z). The axis of the cylinder lies along the z-axis.

The implicit parameterization of the cylindrical surface is the same as the UV domain of the base surface.

The Transformation can reposition the surface in model space using a translation, rotation, and scalingOnly
the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_|dentity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

The UVParameterization enables the surface to be reparameterized and trimmed.

The tolerance is used internally but does not take part of the definition of the surface. It indicates an
appropriate tolerance that can be used to obtain a “representative” 3D NURBS approximation of the surface to
aid in various operations. If not known it must be set to 0.0.

To evaluate this surface at a parameter value

208

Calculate the implicit_parameter from the given parameter using this surface's

UVParameterization data.

base_point = base_surface.evaluate(implicit_param_u, implicit_param_v)
tmp_point.x = base_point .x * cos(base_point.y)
tmp_point.y = base_point .x * sin(base_point.y)

tmp_point.z = base_point.z

© ISO 2008 — All rights reserved

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_SURF_Cylindrical

Required ContentSurface Common surface data

Required Transformation Position surface into model
space

Required UVParameterization Define parameterization and

trimming information

Required PtrSurface Base surface

Required Double Tolerance

7.11.11 PRC_TYPE_SURF Offset

This represents a surface defined by offsetting a given surface along its normal by a specified distance. The
implicit parameterization is the same as the UV domain of the base surface.

The Transformation can reposition the surface in model space using a translation, rotation, and scaling.Only
the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

The UVParameterization enables the surface to be reparameterized and trimmed.

To evaluate this surface at a parameter value

Calculate the implicit_parameter from the given parameter using this surface's
UVParameterization data.

base_point = base_surface.evalaute(implicit_param_u, implicit_param_v)
base_normal = base_surface.evaluate_normal(implicit_param_u, implicit_param_v)
tmp_point = base_point + (offset_distance * base_normal)

© IS0 2008 — Al rights reserved 209

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_SURF_Offset

Required ContentSurface Common surface data

Required Transformation Position surface into model
space

Required UVParameterization Define parameterization and
trimming information

Required PtrSurface Base surface

Required Double Offset distance

7.11.12 PRC_TYPE_SURF_Pipe

This surface type is currently not supported and reserved for future use.

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_SURF_Pipe

Required ContentSurface Common surface data

Required Transformation Position surface into model
space

Required UVParameterization Define parameterization and
trimming information

Required PtrCurve Center curve

Required PtrCurve Origin curve

Required Double Radius of pipe

210 ©1S0 2008 - All rights reserved

7.11.13 PRC_TYPE_SURF_Plane
The represents the cannonical definition of a planar surface which is defined as the XY plane
The cannonical representation of a plane has

e the x-axis setto (1, 0, 0)

e they axis setto (0, 1, 0)

e the z axis set to (0,0,1)

e the implicit parameterization is the uv domain [-infinite_param, infinite_param] x [-infinite_param,
infinite_param]

The implicit parameter value for a plane is calculated using

Implicit_param.u = u_parameter_coeff_a * param.u + u_parameter_coeff_b;

Implicit_param.v = v_parameter_coeff_a * param.v + v_parameter_coeff_b

The Transformation can reposition the surface in model space using a translation, rotation, and scaling. Only
the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

The UVParameterization enables the surface to be reparameterized and trimmed.

To evaluate this surface at a parameter value

Calculate the implicit_parameter from the given parameter using this surface's
UVParameterization data.

tmp_point.x = implicit_param_u
tmp_point.y = implicit_param_v
tmp_point.z =0

© IS0 2008 — All rights reserved 211

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_SURF_Plane

Required ContentSurface Common surface data

Required Transformation Position surface into model
space

Required Domain Define parameterization and
trimming information

Required Double U parameter coeff_a

Require Double V parameter coeff_a

Required Double U parameter coeff b

Required Double V parameter coeff_b

7.11.14 PRC_TYPE_SURF_Ruled

This represents a ruled surface defined by connecting points on each of two curves by a straight line. It is
required that both curves are defined over the same interval since points at equal parameter value along each
curve are connected by a straight line.

The implicit parameterization of the ruled surface is [0, 1] x [first_curve.interval.min, first_curve.interval.max].

The Transformation can reposition the surface in model space using a translation, rotation, and scaling. Only
the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

The UVParameterization enables the surface to be reparameterized and trimmed.

To evaluate this surface at a parameter value

data.

Calculate the implicit_parameter from the given parameter using this surface's UVParameterization

base_pointl = first_curve.evaluate(implicit_param_v)
base_point2 = second_curve.evaluate(implicit_param_v)

tmp_point.x = (1.0-implicit_param_u) * base_point1.x + implicit_param_u * base_point2.x
tmp_point.y = (1.0-implicit_param_u) * base_pointl.y + implicit_param_u * base_point2.y
tmp_point.z = (1.0-implicit_param_u) * base_point1.z + implicit_param_u * base_point2.z

ed

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_SURF_Ruled

Required ContentSurface Common surface data

Required Transformation Position surface into model
space

Required UVParameterization Define parameterization and
trimming information

Required PtrCurve First curve

Required PtrCurve Second curve

7.11.15 PRC_TYPE_SURF_Sphere

This represents the cannonical definition of a spherical surface centered at the origin. The u parameter
corresponds to a circle in the XY plane with 0.0 being the x-axis and positive angles measured around the z-
axis using the right hand rule. The v parameter corresponds to a semi-circle in the plane defined by the u
parameter and passing through the z-axis with the XY plane being 0.0 and positive angles above the XY plane
and negative angles below the XY plane. The implicit parameterization of a sphere is [0, 2* Pi] x [-Pi/2, Pi/2].

The Transformation can reposition the surface in model space using a translation, rotation, and scaling. Only

the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_|dentity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

© 1SO 2008 — All rights reserved

213

The UVParameterization enables the surface to be reparameterized and trimmed.

To evaluate this surface at a parameter value

Calculate the implicit_parameter from the given parameter using this surface's UVParameterization
data.

tmp_point.x = radius * cos(implicit_param_v) * cos(implicit_param_u)
tmp_point.y = radius * cos(implicit_param_v) * sin(implicit_param_u)
tmp_point.z = radius * sin(implicit_param_v)

214 © 1SO 2008 — All rights reserved

Example of a sphere

i i

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_SURF_Sphere

Required ContentSurface Common surface data

Required Transformation Position surface into model
space

Required UVParameterization Define parameterization and
trimming information

Required Double Radius

7.11.16 PRC_TYPE_SURF_Revolution

This represents a surface of revolution defined as revolving a base curve around an axis of revolution.

The implicit parameterization is [0, 2* Pi], [base_curve.interval.min, base_curve.interval.max]. The u value is in
radians and the 0.0 value corresponds to a point on the base_curve. Positive angles are in the direction

determined by the axis direction using the right hand rule.

The Transformation can reposition the surface in model space using a translation, rotation, and scaling. Only
the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description

© IS0 2008 — All rights reserved 215

0x00 PRC_TRANSFORMATION_|dentity Identity

0x01 PRC_TRANSFORMATION_Translate Translation
0x02 PRC_TRANSFORMATION_Rotate Rotation
0x08 PRC_TRANSFORMATION_Scale Uniform scale

The UVParameterization enables the surface to be reparameterized and trimmed.
The axis of revolution is defined by an origin and the cross product of x-axis and y-axis.
The tolerance is used internally but does not take part of the definition of the surface. It indicates an

appropriate tolerance that can be used to determine if the base_curve lies in a plane passing by the axis of
revolution. If not known it must be set to 0.0. See Section 5.7.

To evaluate this surface at a parameter value

Calculate the implicit_parameter from the given parameter using this surface's UVParameterization
data.

base_point = Base_curve.evaluate(implicit_param_v)

point_on_axis = axis_of_revolution.project_on_DirectionZ(base_point)

tmp_axis_x = base_point — point_on_axis

tmp_axis_y = axis_of_revolution.DirectionZ " tmp_axis_x

tmp_point = point_on_axis + cos(implicit_param_u) * tmp_axis_x +sin(implicit_param_u) * tmp_axis_y

where " indicates the cross product

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_SURF_Revolution

Required ContentSurface Common surface data

Required Transformation Position surface into model
space

Required UVParameterization Define parameterization and
trimming information

Required Double Tolerance

Required Vector3d Origin

216 © 1SO 2008 — All rights reserved

Required Vector3d X axis
Required Vector3d Y axis
Required PtrCurve Base curve

7.11.17 PRC_TYPE_SURF_Extrusion

This represents an extruded surface where a base curve is extruded along a sweep vector.

The implicit parameterization of the extruded surface is

[base_curve.interval.min, base_curve.interval.max] x [-infinite_param, infinite_param].

The Transformation can reposition the surface in model space using a translation, rotation, and scaling. Only
the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

The UVParameterization enables the surface to be reparameterized and trimmed.

The evaluation at a paramter value param is

Calculate the implicit_parameter from the given parameter using this surface's
UVParameterization data.

XYZ = base_curve.evaluate(implicit_param_u) + implicit_param_v * sweep_vector;

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_SURF_Extrusion
Required ContentSurface Common surface data

Required Transformation Position surface into model

space

© 1SO 2008 — All rights reserved

217

Required UVParameterization Define parameterization and
trimming information

Required Vector3d Sweep vector must be a unit
vector

Required PtrCurve base curve

7.11.18 PRC_TYPE_SURF_FromCurves

The implicit parameterization is [first_curve.interval.min, first_curve.interval.max] x [second_curve.interval.min,
second_curve.interval.max].

The Transformation can reposition the surface in model space using a translation, rotation, and scaling. Only
the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_|dentity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

The UVParameterization enables the surface to be reparameterized and trimmed.

The evaluation at a paramter value param is

Eval_point = first_curve.evaluate(param.u) + second_curve.evaluate(param.v) — origin;

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_SURF_FromCurves

Required ContentSurface Common surface data

Required Transformation Position surface into model
space

Required UVParameterization Define parameterization and

218 © 1SO 2008 — All rights reserved

trimming information

Required Vector3d Origin
Required PtrCurve First curve
Required PtrCurve Second curve

7.11.19 PRC_TYPE_SURF Torus

This represents the cannonical definition of a torus centered at the origin with the major axis in the XY plane.
The implicit parameterization is [0, 2* Pi] x [0, 2*Pi] where the u parameter is 0.0 corresponding to a circle on
the XZ plane with radius = minor_radius and the v parameter corresponds to a circle on the XY plane with
radius = major_radius + minor_radius.

The Transformation can reposition the surface in model space using a translation, rotation, and scaling.Only
the following flags are acceptable (see section 7.4.11).

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_Identity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

The UVParameterization enables the surface to be reparameterized and trimmed.

To evaluate this surface at a parameter value

data.

Calculate the implicit_parameter from the given parameter using this surface's UVParameterization

radius = major_radius + minor_radius * cos(implicit_param_v);

tmp_point.x = radius * cos(implicit_param_u)
tmp_point.y = radius * sin(imiplicit_param_u)
tmp_point.z = minor_radius * sin(implicit_param_v)

Example of a torus

© 1SO 2008 — All rights reserved

219

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_SURF_Torus

Required ContentSurface Common surface data

Required Transformation Position surface into model
space

Required UVParameterization Define parameterization and

trimming information

Required Double Major radius

Required Double Minor radius

7.11.20 PRC_TYPE_SURF_Transform
A Transform surface is defined by applying a 3D mathematical transformation to a base surface.
The implicit parameterization is the same as the base surface.

The Transformation can reposition the surface in model space using a translation, rotation, and scalingOnly
the following flags are acceptable (see section 7.4.11).

220 © 1SO 2008 — All rights reserved

Value Type Name Data Description
0x00 PRC_TRANSFORMATION_|dentity Identity

0x01 PRC_TRANSFORMATION_Translate Translation

0x02 PRC_TRANSFORMATION_Rotate Rotation

0x08 PRC_TRANSFORMATION_Scale Uniform scale

The UVParameterization enables the surface to be reparameterized and trimmed.

The mathematical transformation can be NULL.

© 1SO 2008 — All rights reserved

221

The nominal evaluation formula for a transform curve at param value is:

Calculate the implicit_parameter from the given parameter using this transform surface's
Parameterization data.

Tmp_point = base_surface.evaluate(implicit_parameter);
If (math_transformation != NULL)

Eval_point =math_transformation.evaluate(tmp_point);
Else

Eval_point = tmp_point;

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_SURF_Transform
Required ContentSurface Common surface data

Required Transformation Position surface into model space
Required UVParameterization Define parameterization and

trimming information

Required PtrSurface Base surface

Required PRC_TYPE_MATH_FCT_3D | 3D mathematical transformation

7.11.21 PRC_TYPE_SURF Blend04

This type is currently not supported and is reserved for future use.

7.12Mathematical Operator

7.12.1 Entity Types

Type Name Type Value Referenceable

PRC_TYPE_MATH PRC_TYPE_ROOT + 900

222 © 1SO 2008 — All rights reserved

PRC_TYPE_MATH_FCT_1D

PRC_TYPE_MATH + 1

PRC_TYPE_MATH_FCT_1D_Polynom

PRC_TYPE_MATH_FCT 1D +1

PRC_TYPE_MATH_FCT_1D_Trigonometric

PRC_TYPE_MATH_FCT_1D +2

PRC_TYPE_ MATH_FCT_1D_Fraction

PRC_TYPE_MATH_FCT 1D + 3

PRC_TYPE_MATH_FCT_1D_ArctanCos

PRC_TYPE_MATH_FCT 1D + 4

PRC_TYPE_ MATH_FCT_1D_Combination

PRC_TYPE_MATH_FCT 1D +5

PRC_TYPE_MATH_FCT_3D

PRC_TYPE_MATH + 10

PRC_TYPE_MATH_FCT _3D_Linear

PRC_TYPE_MATH_FCT 3D +1

PRC_TYPE_MATH_FCT_3D_NonLinear

PRC_TYPE_MATH_FCT 3D +2

7.12.2 PRC_TYPE_MATH

Abstract class for mathematical operators.

7.12.3 PRC_TYPE_MATH_FCT_1D

Base type for a equation of one variable. The following are legal types of equations;

e Polynomial equation

e Cosine based equation

e Fraction of two 1D equations
e Specific equation

e Combination of 1D equation

PRC_TYPE_MATCH_FCT_1D_Polynom
PRC_TYPE_MATCH_FCT_1D_Trigonometric
PRC_TYPE_MATCH_FCT_1D_Fraction
PRC_TYPE_MATCH_FCT_1D_ArctanCos

PRC_TYPE_MATCH_FCT_1D_Combination

7.12.4PRC_TYPE_MATH_FCT_1D_Polynom

This represents 1D polynomial equation.

The evaluation formula for a given parameter value is

output = 0.0

For (i=0; i<number_of_coefficients; i++) {

output = output + coefficient[i] * pow(param, i);

© ISO 2008 — Al rights reserved

223

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_MATH_FCT_1D_Polynom

Required Unsignedinteger Number of coefficients in
polynomial

Required ArrayOf [Double] Array of coefficients

7.12.5 PRC_TYPE_MATH_FCT_1D_Trigonometric

This represents a 1D trigonometric equation.

The evaluation formula for param value is

Output = dc_offset + amplitude * cos(param*freq — phase)

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_MATH_1D_Trigonometric
Required Double Amplitude

Required Double Phase

Required Double Frequency

Required Double Dc_offset

7.12.6 PRC_TYPE_MATH_FCT_1D_Fraction

This represents a 1D equation that is a fraction of two 1D equations.

The evaluation formula for param value is

Output = Numerator / Denominator

224

© ISO 2008 — All rights reserved

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_MATH_FCT_1D_Fraction
Required PRC_TYPE_MTH_FCT_1D Numerator
Required PRC_TYPE_MTH_FCT_1D Denominator

7.12.7 PRC_TYPE_MATH_FCT_1D_ArctanCos

This represents a 1D trignometric arcfunction.

The evaluation formula for param is

Where

e -Pi/2 < amplitude < Pi/2

Output = atan((amplitude * cos((param * frequency) + phase))) * a

e -263 < (param * frequency) < 263

E Reserved_double must be set to 0.0

Required or Option

Data Type

Data Description

Required Unsignedinteger PRC_TYPE_MATH_FCT_1D_ArctanCos
Required Double A

Required Double Amplitude

Required Double Frequency

Required Double Phase

Required Double E ; note that this is not used

© ISO 2008 — Al rights reserved

225

7.12.8 PRC_TYPE_MATH_FCT_1D_Combination

7.12.8.1 General
This represents a function that is a combination of several 1D functions

The evaluation formula at a param value is

Output = 0.0
For (i=0; i<number_of_coefficients; i++) {

Output = output + coefficient[i] * functionli];

}
Required or Option Data Type Data Description
Required Unsignedinteger PRC_TYPE_MATH_FCT_1D_Combination
Requiried Unsignedinteger Number of coefficients (or functions)
Required ArrayOf Array of coefficients and functions
[CombinationFunctions]

7.12.8.2 CombinationFunctions

Required or Option Data Type Data Description
Required Double Coefficient
Required PRC_TYPE_MATH_FCT_1D Any 1D mathematical function

7.12.9 PRC_TYPE_MATH_FCT_3D

Abstract class for 3D mathematical functions.

The following are legal 3D mathematical functions:
e PRC_TYPE__MATH_FCT_3D_Linear
e PRC_TYPE_MATH_FCT_3D_NonLinear

7.12.10 PRC_TYPE_MATH_FCT_3D_Linear

The represents a 3D linear function.

The evaluation formula at a param value is

226 © 1SO 2008 — All rights reserved

output.x = mat[0] [0] * param.x + mat[1] [0] * param.y + mat[2][0] * param.z + vect[0]
output.y = mat[0] [1] * param.x + mat[1] [1] * param.y + mat[2][1] * param.z + vect[1]

output.z = mat[0] [2] * param.x + mat[1] [2] * param.y + mat[2][2] * param.z + vect[2]

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_MATH_FCT_3D_Linear
Required Double[3] [3] Matrix[3][3] stored row by row
Required Double[3] Vector of 3 coordinates

7.12.11 PRC_TYPE_MATH_FCT_3D_NonLinear
This represents a 3D non-linear mathematical function.

The evaluation formula for param is as follows:

tmp_result = left_transformation.evaluate(param);
output.x = tmp_result.x * cos(tmp_result.y * d2);
output.y = tmp_result.x * sin(tmp_result.y *d2);
output.z = tmp_result.z;

output = right_transformation.evaluate(output);

Note that the following are reserved for future use but should be initialized to default values:
e Reserved_double must be set to Pi
e Reserved_int_1 must be setto 2
e Reserved_int_2 must be set to 2

e Reserved_int_3 must be setto 0

Required or Option Data Type Data Description

Required Unsignedinteger PRC_TYPE_MATH_FCT_3D_NonlLinear

© IS0 2008 — All rights reserved 227

Required PRC_TYPE__MATH_FCT_3D Left 3D non-linear transformation
Required PRC_TYPE__MATH_FCT_3D Rignt 3D non-linear transformation
Required Double d2

Required Double Reserved_double (not used)
Required Integer Reserved_int_1 (not used)
Required Integer Reserved_int_2 (not used)
Required Integer Reserved_int_3 (not used)

8 Other Data Classes

8.1 Other data classes
Other Data Classes represent composite data fields within a Base Entity. A flag indicates the presense or
absense of this data. This flag may be a Boolean (TRUE or FALSE), a value within an enumerated type, or

an integer value. The flag may also be a character whose bits represent options where one or more of the
options may be present.

8.2 Parameter Range

8.2.1 Infinite_param

This represents a real number 12345 which is used to define infinity, the largest parameter value.

8.2.2 Interval

An Interval is a subset of R™. It is represented by two double precision numbers defining the minimum and
maximum values of the interval. An interval is defined to be all values between the minimum and maximum

minimum <=t <= maximum

Infinite or semi-infinite intervals may be specified by using infinite_param to represent infinity. The following
are examples of intervals:

e [0.0, 1.0

e [-infinite_param, infinite_param]

e [0.0, infinite_param]
The primary use of an interval is to define the domain of a curve. For a non-periodic curve, whether an open
or closed curve, the interval defines the domain of legal parameter values for the curve. For a periodic closed
curve, such as a circle or periodic closed NURBS curve, the interval defines the period (i.e. the length of the
interval) as well as the primary domain of the curve. Any value is a legal parameter when evaluated modulo

the period. For a periodic open curve, such as a proper subset of a circle, the interval defines the valid subset
of R* that is the domain of legal parameter values.

228 © 1SO 2008 — All rights reserved

Required or Option Data Type Data Description

Required Double Minimum value

Required Double Maximum value

8.2.3 Parameterization

Parameterization data provide a way to reparameterize a curve and to define the domain of the curve. The
domain of the curve define legal parameter values.

Two doubles, Coeff-a and Coeff-b, are used to reparameterize a curve towards its implicit parameterization.
The evaluation formula to calculate the implicit parameter from a parameter is:
Implicit_parameter = Coeff_a * parameter + Coeff_b

If there is no reparameterization of the curve, Coeff_a must be set to 1.0 and Coeff_b must be set to 0.0. In
this case implicit_parameter equals the specified parameter.

Parameterization data also contain an interval used to define the domain of the curve. This interval restricts
the curve before applying the reparameterization formula. The reparameterization formula can be used to
calculate the implicit_interval from the given interval in the same way that it is used to calculate the
implicit_parameter from a given parameter.

All curves must have an interval to define the legal parmeter values of the curve. In the case of base curves
(curves not defined by reference to other curves), this interval defines the domain of definition for the curve.
For curves which are defined in terms of other curves, the interval represents a subset of the curve which may
be the entire curve or a portion of it. The interpretation of the inteval depends upon the curve being periodic or
non-periodic (see the definition of Interval).

For instance, a circle has the implicit domain of [0.0, 2*Pi] and a line has the implicit domain of [-infinite_param,
infinite_param]. A portion of the circle might be limited to [0.0, Pi].

Required or Option Data Type Data Description
Required Interval trim interval
Required Double Coeff_a

Required Double Coeff_b

As an example, consider a circle. It has an implicit parameterization on the interval [0.0, 2.0*PI]. For this case
e Coeff a=1.0
e Coeff_ b=0.0
e Interval =[0.0, 2.0* Pi]

To reparameterize the circle so the parameter values are in the interval [0.0, 1.0] would give

© IS0 2008 — All rights reserved 229

e Coeff_ a=2.0*Pi

e Coeff_b=0.0,

¢ Interval =[0.0, 1.0]
To define a semi circle

e Coeff a=1.0

e Coeff b=0.0

e Interval = [-Pi/2.0, Pi/2.0]

8.2.4 Domain

A Domain is a subset of R? that is used to define the domain of definition of a surface. It is represented by a
2D vector defining the minimum UV parameter values and a 2D vector defining the maximum UV parameters.

The domain of the surface is
minimum U <= u <= maximum U
minimum V <= v <= maximum V

The interval in U (or V) when used with a specific surface definition will define a surface that is open, closed,
or periodic in that parameter. For a non-periodic surface, whether an open or closed surface, the interval
defines the domain of legal parameter values for the surface. For a periodic closed surface, such as a cone or
periodic closed NURBS surface, the interval defines the period (i.e. the length of the interval) as well as the
primary domain of the surface. Any value is a legal parameter when evaluated modulo the period. For a
periodic open surface, such as a proper subset of a cone, the interval defines the valid subset of R?that is the
domain of legal parameter values.

Required or Option Data Type Data Description
Required Vector2d Minimum U and V
Required Vector2d Maximum U and V

8.2.5 UVParameterization

This describes a reparameterization of a surface towards implicit parameterization. Coeff-a must be set to 1.0
and Coeff-b must be set to 0.0 if there is no reparameterization.

The evaluation formula is:
If (Iswap_uv) {

Implicit_param.u = U_param_coeff_a * param.u + U_param_coeff_b

230 © IS0 2008 — Al rights reserved

Implicit_param.v = V_param_coeff_a * param.v + V_param_coeff_b
}else {
Implicit_param.u = V_param_coeff_a * param.v + V_param_coeff_b

Implicit_param.v = U_param_coeff_a * param.u + U_param_coeff_b

The domain of the surface is specified in numbers before the previous reparameterization formula is aplied.

Required or Option Data Type Data Description
TRUE implies swap the uv

Required Boolean param; FALSE implies do not
swap

Required Domain Surface domain

Required Double U_param_coeff_a

Required Double V_param_coeff_a

Required Double U_param_coeff_b

Required Double V_param_coeff_b

8.3 BaseTopology

Base topology represents optional information for a topological entity. Such optional information is comprised
of a name, attributes, and an identifier within the originating CAD system. The identifier is not used as an
identifier within the PRC File, but is simply carried as information about the origin of this entity within the
originating CAD system.

Required or Option Data Type Data Description

Required Boolean TRUE if base information is
present; else FALSE

OPTION: TRUE AttributeData Attributes attached to the
topological entity

© IS0 2008 — All rights reserved 231

OPTION: TRUE Name Name attached to the
topological entity
OPTION: TRUE UnsignedInteger Identifier in originating CAD

system; this may not be used to
reference entity within PRC
File;

8.4 BaseGeometry

Base geometry represents optional information for a geometric entity. Such optional information is comprised
of a name, attributes, and an identifier within the originating CAD system. The identifier is not used as an
identifier within the PRC File, but is simply carried as information about the origin of this entity within the

originating CAD system.

Required or Option Data Type Data Description

Required Boolean TRUE if base information is
present; else FALSE

OPTION: TRUE AttributeData Attributes attached to the
geometric entity

OPTION: TRUE Name Name attached to the
geometric entity

OPTION: TRUE Unsignedinteger Identifier in originating CAD
system; this may not be used to
reference entity within PRC
File;

8.5 Basic types for geometry

8.5.1 Vector2d

Representation of a 2D vector. This type may be used to represent either 2D positions or vectors. The

context must be used to determine if a position or vector is meant.

Required or Option Data Type Data Description

Required Double X value

Required Double Y value

232 © 1SO 2008 — All rights reserved

8.5.2 Vector3d

Representation of a 3D vector. This type may be used to represent either 3D positions or vectors. The

context must be used to determine if a position or vector is meant.

Required or Option Data Type Data Description
Required Double X value
Required Double Y value
Required Double Z value

8.5.3 BoundingBox

Define a bounding box with sides parallel to the XYZ coordinate planes using two diagonal corners of the box.

The minimum and maximum must satisfy

e Xmin < Xmax

e Ymin < Ymax

® Zmin < Zmax

Required or Option Data Type Data Description
Required Vector3d Minimum corner
Required Vector3d Maximum corner

8.6 UserData

Applications that write a PRC File may store an arbitrary bit stream of private data for the following data

types :

e Subtypes of PRC_TYPE_ASM

e Subtypes of PRC_TYPE_RI

e Subtypes of PRC_TYPE_MKP

e Subtypes of PRC_TYPE_MISC

All those entities bear implicitely UserData at the end of their data definition.

© ISO 2008 — Al rights reserved

233

Required or Option Data Type Data Description

Number of bits in the bit

Required Unsignedinteger stream

Arbitrary bit stream of the

OPTION: number bits >0 UserDataStream .
specified length

8.6.1 UserDataStream

Required or Option Data Type Data Description

Required Unsignedinteger Nun'.\ber _Of UserPata sub
sections in the bit stream

Required ArrayOf[UserDataSubSection] Array of sub-sections

8.6.2 UserDataSubSection

Required or Option Data Type Data Description
S Application UUID th
Required Boolean fame pplication an
FileStructure
OPTION : FALSE CompressedUniqueld Application UUID
Number of bits in the bit
Required Unsignedinteger stream for this user data
subsection
OPTION: number bits > 0 BITS Arbitrary bit stream of the
specified length

9 Schema Definition

9.1 General
The PRC File Format Specification provides a mechanism for describing data stored within a PRC File. A

schema definition language can describe changes between versions of the PRC File Format Specification.
See 5.2 for a basic description of versioning in PRC.

234 © 1SO 2008 — All rights reserved

This mechanism allows new entity types to be defined and information to be added for an existing entity type
and written to a PRC File which is readable by PRC File Reader software written to conform to previous
versions of the PRC File Format Specification.

New data for an existing entity type must be added at the end and before UserData (if any); this rule applies to
all inheritance chain for this given type.

The schema definition language contains tokens to

e describe the primary data in an entity (Boolean, Integer, Unsignedinteger, Double, Character, String,
Vector 2D, Vector3D, Interval, Domain, BoundingBox);

e define a block of data which may indicate a version number;

e describe conditional processing (if/then/else, relational tests such as less than, less than or equal to,
greater than, greater than or equal to, equal to, not equal to);

e define variables which may be assigned values;

e perform simple binary mathemathical operations such as multiplication, division, addition, subtraction;

e test the type of geometry present in a file;

e read a curve or surface.

Using these schema tokens, new entity types or additions to an existing entity type may be described. This
capability is used to describe changes between versions of the PRC File Format Specification.

The following describes processing the data in a PRC File from the point of view of a PRC File Writer and a
PRC File Reader:

e The current data in the PRC File (indicated by the authoring_version) consists of base entity data
(indicated by the mimimal_version_for_read) plus a delta describing new fields within base entities
plus new entities (indicated by schema definitions in the PRC File).

e A PRC File Writer

o
o

o

Is based on a current_version of the PRC File Format Specification.

Writes minimal_version_for_read to indicate the structure and content of the base data that
the Writer is based on.

Writes authoring_version to indicate the structure and content of the current file.

If minimal_version_for_read = authoring_version, the Writer does not have to write any extra
data.

If mimimal_version_for_read < authoring_version, the PRC File Writer must include schema
definitions in the PRC File describing the delta: the new fields of base entities and all new
entities, but only if such entities actually exist in the file.

e APRC File Reader

o
o

Is based on a current_version of the PRC File Format Specification.

If the current_version is less that the minimal_version_to_read, an error has occurred and the
Reader should not continue to process the file. The Reader is built on a version of the
specification that preceeds the (base) version of the specification that the Writer was built on.
If the current_version is the same as the authoring_version, the PRC File Reader may read all
of the data in the file without reference to any schema definitions. Both the Writer and Reader
have the same view of the data in the PRC File.

Otherwise, the Reader is built on a version of the specification that knows the structure of the
base entities in the file and will use the schema definitions to process new data from the PRC
File. When reading an entity

© IS0 2008 — Al rights reserved 235

= If the entity type is a base entity type, the reader will read all of the base data for the
entity from the file. It will then use the schema to skip new information in the file.
= If the entity type is a new entity, the Reader will use the schema to skip the information

in the PRC File

9.2 Enumeration of Schema Tokens

The following table provides the value, nhame, and short description of the schema tokens that are used to
describe a PRC entity. See 9.3 for a description of how these tokens are used.

Value | Token Name Description
0 EPRCSchema_Data_Boolean Read a Boolean
1 EPRCSchema_Data_Double Read a Double
2 EPRCSchema_Data_Character Read a Character
3 EPRCSchema_Data_Unsigned_Integer Read an Unsignedinteger
4 EPRCSchema_Data_Integer Read an Integer
5 EPRCSchema_Data_String Read a String
6 EPRCSchema_Father_Type Father type of the current object
7 EPRCSchema_Vector_2D Read a Vector2d
8 EPRCSchema_Vector_3D Read a Vector3d
9 EPRCSchema_Extent_1D Read an Interval
10 EPRCSchema_Extent_2D Read a Domain
11 EPRCSchema_Extent_3D Read a BoundingBox
12 EPRCSchema_Ptr_Type Read a specified typed object
13 EPRCSchema_Ptr_Surface Read a surface
14 EPRCSchema_Ptr_Curve Read a curve
15 EPRCSchema_For Loop of instructions
16 EPRCSchema_SimpleFor Loop of instructions
17 EPRCSchema_lIf Condition block
18 EPRCSchema_Else Condition block
18 EPRCSchema_Block_Start Define an instruction block
20 EPRCSchema_Block_Version Define a versioned instruction block
21 EPRCSchema_Block_End End of a bloc
22 EPRCSchema_Value_Declare Declare a global value
23 EPRCSchema_Value_Set Set a global value
24 EPRCSchema_Value_DeclareAndSet Declare and set a global value
25 EPRCSchema_Value Access a global value
26 EPRCSchema_Value_Constant Value constant
27 EPRCSchema_Value_For Value of the for-loop
28 EPRCSchema_Value_Curvels3D Specific value (9.3)
29 EPRCSchema_Operator MULT * operator
30 EPRCSchema_Operator_DIV / operator
31 EPRCSchema_Operator_ADD + operator
32 EPRCSchema_Operator_SUB — operator
33 EPRCSchema_Operator_LT < operator
34 EPRCSchema_Operator_LE <= operator
35 EPRCSchema_Operator_ GT > operator
36 EPRCSchema_Operator_GE >= operator
37 EPRCSchema_Operator_EQ == operator
38 EPRCSchema_Operator_NEQ = operator

236 © 1SO 2008 — All rights reserved

9.3 Schema Processing
9.3.1 EPRCSchema_Data_Boolean
The next field in the file is a Boolean.
9.3.2 EPRCSchema_Data_Double
The next field in the file is a Double.
9.3.3 EPRCSchema_Data_Character
The next field in the file is a Character.
9.3.4 EPRCSchema_Data_Unsigned_Integer
The next field in the file is an Unsignedinteger.
9.3.5 EPRCSchema_Data_Integer
The next field in the file is an Integer.
9.3.6 EPRCSchema_Data_String
The next field in the file is a String.

9.3.7 EPRCSchema_Father_Type

This token indicates that the next token in the token array is the father type. Legal values of the father types

are PRC_TYPE_SURF and PRC_TYPE_CRV.

Father type is used in case of inheritance from another object. There is no specific field in the PRC File
corresponding to this type of token. In this case, the parent object (abstract curve or surface) is read before

the object.

9.3.8 EPRCSchema_ Vector_2D
The next field in the file is a Vector2d.
9.3.9 EPRCSchema_ Vector_3D
The next field in the file is a Vector3d.
9.3.10 EPRCSchema_Extent_1D
The next field in the file is an Interval.
9.3.11 EPRCSchema_Extent_2D
The next field in the file is a Domain.

9.3.12 EPRCSchema_Extent_3D

The next field in the file is a BoundingBox.

© ISO 2008 — Al rights reserved

237

9.3.13 EPRCSchema_Ptr_Type

This token indicates that the next token in the token array corresponds to the type of object that is next in the
file. The legal types that may be read from the file are

e PRC_TYPE_SURF

e PRC_TYPE_CRV

e PRC_TYPE_TOPO

e PRC_TYPE_RI

e PRC_TYPE_MKP_Markup

e PRC_TYPE_MATH_FCT_1D

e PRC_TYPE_MATH_FCT_3D

e The integer number representing a new entity type defined in the schema sections of a PRC File.
9.3.14 EPRCSchema_Ptr_Surface

The next field in the file is a surface (PRC_TYPE_SURF). This is equivalent to a EPRCSchema_Ptr_Type
with an implicit PRC_TYPE_SURF object type.

9.3.15 EPRCSchema_Ptr_Curve

The next field in the file is a curve (PRC_TYPE_CRYV). This is equivalent to a EPRCSchema_Ptr_Type with
an implicit PRC_TYPE_CRYV object type.

9.3.16 EPRCSchema_For
An EPRCSchema_For defines a for loop as three tokens
e The token EPRCSchema_For indicating a for loop follows.
e A schema block defining the number of times to execute the block.

e A schema block defining the block to be executed.

Example:
Token Sequence Pseudo Code
EPRCSchema_For int loop_end = read_integer() + 6;
EPRCSchema_Operator_ADD for (int i=0; i<loop_end; i++) {
EPRCSchema_Data_|Integer read_double();
EPRCSchema_Value_Constant }
6

238 © IS0 2008 — Al rights reserved

EPRCSchema_Data_Double

9.3.17 EPRCSchema_SimpleFor

An EPRCSchema_SimpleFor defines a for loop as two tokens

e The token EPRCSchema_For indicating a for loop follows.

e The number of time to execute the block is not defined in the schema. For a SimpleFor loop the loop
counter must be a simple integer in the PRC File and not defined by a more complex schema block.

e A schema block defining the block to be executed.

The next token is the loop counter number and the token after that is the token to execute counter number of

times.

Example:

Token Sequence

Pseudo Code

EPRCSchema_SimpleFor
EPRCSchema_Block_Start

EPRCSchema_Data_Integer

EPRCSchema_Data_Double

EPRCSchema_lIf

EPRCSchema_Operator_EQ
EPRCSchema_Value_For
EPRCSchema_Value_Constant
0

EPRCSchema_Data_Double

EPRCSchema_Block_End

int loop_end = read_unsigned_integer();

for (int i=0; i<loop_end; i++)

{
read_integer();
read_double()
if (i==0)

read_double();

9.3.18 EPRCSchema_If and EPRCSchema_Else

This token indicates the start of a conditional token clause. The next token instruction corresponds to the
conditional value, and executes the following token instruction if the conditional value is true. If there is an

EPRCSchema_Else token.

Example:

Token Sequence

Pseudo Code

© ISO 2008 — Al rights reserved

239

EPRCSchema_lIf
EPRCSchema_OperatorEQ
EPRCSchema_Data_|Integer
EPRCSchema_Value_Constant
3
EPRCSchema_Vector_3D
EPRCSchema_Else

EPRCSchema_Vector_2D

tmp_integer = read_integer();

If (tmp_integer == 3)
read_vector_3d();

Else

read_vector_2d();

9.3.19 EPRCSchema_Block_Start

This token indicates a block of tokens terminated by an EPRCSchema_Block_End. The block of tokens is not

versioned.

9.3.20 EPRCSchema_Block_Version

This token indicates a versioned block of tokens terminated by an EPRCSchema_Block_End. The token
following the EPRCSchema_Block_Version is is the version number. If the version number is less than or
equal to the current version, the block version is ignored.

Example:

Token Sequence Pseudo Code

EPRCSchema_Block_Version
150

EPRCSchema_Data_Integer

If (current_version < 150) {
read_integer();

read_vector_3d();

EPRCSchema_Vector_3D }

EPRCSchema_Block_End

9.3.21 EPRCSchema_Block_End
This token indicates the end of a token block.

9.3.22 EPRCSchema_Value_Declare

This token declares and sets to zero a new value indexed by the next instruction value. All values are local to
the block instruction.

240 © 1SO 2008 — All rights reserved

Example:

Token Sequence

Pseudo Code

EPRCSchema_Value_Declare

5

int value_5 = 0;

9.3.23 EPRCSchema_Value_Set

Sets a value indexed by the next token instruction value. Before it can be used, a variable must be declared.

Example:

Token Sequence

Pseudo Code

EPRCSchema_Value_Declare
5

EPRCSchema_Value_Set
5

EPRC_Schema_Data_Integer

int value_5 = 0;

value_5 = read_integer();

9.3.24 EPRCSchema_Value_DeclareAndSet

Declares and sets a new value indexed by the next instruction value.

Example:

Token Sequence

Pseudo Code

EPRCSchema_Value_DeclareAndSet
5

EPRC_Schema_Data_lInteger

int value_5 = read_integer();

9.3.25 EPRCSchema_Value

Retrieves the content of the value indexed by the next instruction value. Before it can be used, a

variable must be declared.

Example:

Token Sequence

Pseudo Code

EPRCSchema_Value_DeclareAndSet

int value_5 = 2;

© 1SO 2008 — All rights reserved

241

5
EPRCSchema_Value_Constant
2
EPRCSchema_Value_DeclareAndSet
2
EPRCSchema_Data_Integer
EPRCSchema_DeclareAndSet
6
EPRCSchema_Operator_ADD
EPRCSchema_Value
5
EPRCSchema_Value

2

int value_2 = read_integer();

int value_6 = value_5 + value_2;

9.3.26 EPRCSchema_Value_Constant

Retrieves a constant value given by the next token.

Example:

Token Sequence

Pseudo Code

EPRCSchema_Value_DeclareAndSet
5
EPRC_Schema_Value_Constant

10

int value_5 = 10;

9.3.27 EPRCSchema_Value_For

Retrieves the value of the current for-loop.

Example:

See 9.3.17 example.

9.3.28 EPRCSchema_Value_Curvels3D

If the current object is a curve, return true if itis a 3D curve, false if it is a 2D curve.

242

© ISO 2008 — All rights reserved

9.3.29 EPRCSchema_Operator_MULT
Binary operator for multiplication.

9.3.30 EPRCSchema_Operator_DIV
Binary operator for division.

9.3.31 EPRCSchema_Operator_ADD
Binary operator for addition.

9.3.32 EPRCSchema_Operator_SUB
Binary operator for subtraction.

9.3.33 EPRCSchema_Operator_LT
Relational operator for less than comparison.

Example:

Token Sequence

Pseudo Code

EPRCSchema_Value_DeclareAndSet
5
EPRCSchema_Data_Integer
EPRC_Schema_Value_DeclareAndSet
10
EPRCSchema_Data_Integer
EPRCSchema_lIf
EPRC_Schema_Operator_LT
EPRCSchema_Value
5
EPRCSchema_Value
10
EPRCSchema_Block_Start

EPRCSchema_Block_End

int value_5 = read_integer();
int value_10 = read_integer();

if (value_5 < value_10) {

© ISO 2008 — Al rights reserved

243

9.3.34 EPRCSchema_Operator_LE

Relational operator for less than or equal to comparison.
9.3.35 EPRCSchema_Operator_GT

Relational operator for greater than comparison.

9.3.36 EPRCSchema_Operator_GE

Relational operator for greater than or equal to comparison.
9.3.37 EPRCSchema_Operator_EQ

Relational operator for equal to comparison.

9.3.38 EPRCSchema_Operator_NEQ

Relational operator for not equal to comparison.
9.4 Schema Examples

9.4.1 General
The following are some requirements of the schema definition language and its usage
1. All of the examples have an enclosing block which is not a version block. This is a requirement.
2. New curves (or surfaces) have either the PRC_TYPE_CRV or a particular curve entity type as the
EPRCSchema_Father_Type. The Father_Type indicates what data will be inherited by the entity in

the schema.

3. For example, for PRC_TYPE_CRV and PRC_TYPE_SURFACE, attributes, transform, and
parametrization are inherited from the Father_Type.

4. The example to add a field to an existing entity did not define the previous data. All new data must be
added to the end of an existing entity.

9.4.2 An existing entity

This is the schema definition of PRC_TYPE_MISC_GeneralTransformation which was defined in version 8137
of the PRC File Format Specification.

Data Type Token Sequence Comments
Unsignedinteger PRC_TYPE_MISC_GeneralTransformation Value indicating type of entity
Unsignedinteger 8 N umber of tokens that follow
Unsignedinteger EPRCSchema_Block_Start Start of all blocks
Unsignedinteger EPRCSchema_Block_Version Beginning of a versioned block

244 © 1SO 2008 — All rights reserved

Unsignedinteger

8137

Version number

Unsignedinteger

EPRCSchema_SimpleFor

For loop to get the data

Unsignedinteger

16

Read 16

Unsignedinteger

EPRCSchema_Data_Double

Doubles in the transformation
matrix

Unsignedinteger

EPRCSchema_Block_End

End of new versioned block

Unsignedinteger

EPRCSchema_Block_End

End of all blocks

9.4.3 Existing PRC_TYPE_CRV_Polyline

The following is the schema for the existing PRC_TYPE_CRV_Polyline

Data Type

Token Sequence

Comments

Unsignedinteger

PRC_TYPE_CRV_Polyline

Value indicating type of entity

UnsignedInteger

14

N umber of tokens that follow

Unsignedinteger

EPRCSchema_Block_Start

Start of all blocks

Unsignedinteger

EPRCSchema_Block_Version

Beginning of a versioned block

Unsignedinteger

Version_0

Version number

Unsignedinteger

EPRCSchema_Father_Type

The class of the parent entity

Unsignedinteger

PRC_TYPE_CRV

Is a curve

Unsignedinteger

EPRCSchema_SimpleFor

For loop to get the data

Unsignedinteger

Integer value

Number of points in the polyline

Unsignedinteger

EPRCSchema_lIf

if the

Unsignedinteger

EPRCSchema_Value_Curvels3D

Curve is a 3D curve

Unsignedinteger

EPRCSchema_Vector_3D

The data field will be a 3D vector

Unsignedinteger

EPRCSchema_Else

otherwise

Unsignedinteger

EPRCSchema_Vector_3D

The data field will be a 2D vector

Unsignedinteger

EPRCSchema_Block_End

End of new versioned block

Unsignedinteger

EPRCSchema_Block_End

End of all blocks

© 1SO 2008 — All rights reserved

245

9.4.4 Add afield to existing entity

In this example a string field is added to the existing curve PRC_TYPE_CRV_Line.

For an existing entity, new data must be added to the end.

Data Type

Token Sequence

Comments

Unsignedinteger

PRC_TYPE_CRV_Line

This is the entity type of the
existing type of curve (line).

Unsignedinteger

6

Number of tokens to follow

Unsignedinteger

EPRCSchema_Block_Start

Start of all blocks

Unsignedinteger

EPRCSchema_Block_Version

Beginning of a versioned block

Unsignedinteger

9149

File version number 149th day of
2009

Unsignedinteger

EPRCSchema_Data_String

Data field

Unsignedinteger

EPRCSchema_Block_End

End of new versioned block

Unsignedinteger

EPRCSchema_Block_End

End of all blocks

9.4.5 Add anew curve

In this example a new curve type with 2 doubles and a pointer to a curve is added to the schema.

Data Type

Token Sequence

Comments

Unsignedinteger

PRC_TYPE_CRV_NewCurve

This is the entity type of the new
curve.

Unsignedinteger

10

N umber of tokens to follow

Unsignedinteger

EPRCSchema_Block_Start

Start of all blocks

Unsignedinteger

EPRCSchema_Block_Version

Beginning of a versioned block

Unsignedinteger

Version_1

File version number

Unsignedinteger

EPRCSchema_Father_Type

The class of the parent entity

Unsignedinteger

PRC_TYPE_CRV

Is a curve

Unsignedinteger

EPRCSchema_Double

Data field is a double

Unsignedinteger

EPRCSchema_Double

Data field is a double

Unsignedinteger

EPRCSchema_Ptr_Curve

Data field is a curve

Unsignedinteger

EPRCSchema_Block_End

End of new versioned block

246

© ISO 2008 — All rights reserved

Unsignedinteger

EPRCSchema_Block_End

End of all blocks

9.4.6 Multiple revisions to an entity type

Data Type

Token Sequence

Comments

Unsignedinteger

PRC_TYPE_CRV_NewCurve

This is the entity type of the new
curve.

Unsignedinteger

14

Number of tokens to follow

Unsignedinteger

EPRCSchema_Block_Start

Start of all blocks

Unsignedinteger

EPRCSchema_Block_Version

Start of

Unsignedinteger

Version_1

Version number of Version_1 block

Unsignedinteger

EPRCSchema_Father_Type

The father type

UnsignedInteger

PRC_TYPE_CRV_Line

Isa PRC_TYPE_CRV_Line

Unsignedinteger

EPRCSchema_Data_Double

Data field 1 is a double

Unsignedinteger

EPRCSchema_Data_Double

Data field 2 is a double

Unsignedinteger

EPRCSchema_Block_End

End of version 1 block

Unsignedinteger

EPRCSchema_Block_Version

Start of

Unsignedinteger

Version_2

Version number of Version_2 block

Unsignedinteger

EPRCSchema_SimpleFor

Simple for loop to read

Unsignedinteger

EPRCSchema_Data_Integer

An integer

Unsignedinteger

EPRCSchema_Block_End

End of version 2 block

Unsignedinteger

EPRCSchema_Block_End

End of all blocks

10 Data Types for Physical File

10.1 General

All data within a physical PRC File exists in a section which is a contiguous stream of bytes which starts and
ends on a byte boundary. A section may be either uncompressed (header sections) or compressed (all other

sections).

© 1SO 2008 — All rights reserved

247

Data within an uncompressed section is written so that individual variables occupies a specific number of
bytes.

Data within a compressed section has been written in a bit-by-bit mannor with no restrictions on individual
variables crossing byte boundaries. At the end of the section, the last byte is padded with zero bits, the entire
section is compressed using flate (see Bibliography) and the compressed section is written to the file. At this
point, the current name and current graphics are reset.

Reading one section is independent from reading other sections and one can skip directly to a section since
the offset (in bytes) of the section from the beginning of the file is known as it is also stored in the PRC File.

10.2 Uncompressed Types
10.2.1 General
The following types are used to define data contained within uncompressed sections of the PRC File.

10.2.2 UncompressedFiles

This type represents writing the data for multiple uncompressed file data.

Required or Option Data Type Data Description

Required UncompressedUnsignedinteger | Number of uncompressed Files

Required ArrayOf [UncompressedBlock] | Array of uncompressed file
data

10.2.3 UncompressedBlock

The purpose of this function is to write the number of bytes being written followed by the specified number of
bytes without the need to further interpret the content of the byte stream.

Required or Option Data Type Data Description
Required UncompressedUnsignedinteger | size (bytes) of uncompressed
block
Required Byte stream of the specified | Block of specified size
size

10.2.4 UncompressedUnsignedinteger

This type represents writing an unsigned integer. An unsigned integer is converted into a 4 byte array of
unsigned characters which is independent of machine byte ordering using the algorithm
MakePortable32BitsUnsigned.

Required or Option Data Type Data Description

248 © 1SO 2008 — All rights reserved

Required 4 bytes 4 bytes representing unsigned
integer

10.3 Compressed Types

10.3.1 General

The following types are used to define data contained within compressed sections of the PRC File. Each type
may start or end at any bit position within a byte in the compressed section.

10.3.2 Bits
This requires a special algorithm. See 11.3.

10.3.3 Boolean

Required or Option Data Type Data Description

Required Bits(1) Single bit in a bit stream

10.3.4 Character

Required or Option Data Type Data Description

Required Bits(8) Single character in a bit stream

10.3.5 CharacterArray

This requires a special algorithm. See 11.6.

10.3.6 FloatAsBytes

This requires a special algorithm. See 11.5.

10.3.7 String

This is a UTF8-encoded string. The number of characters does not include a terminating null character.

Required or Option Data Type Data Description

Required Boolean TRUE if the string is not NULL;
else FALSE

OPTION: TRUE Unsignedinteger Size of character array

© IS0 2008 — All rights reserved 249

OPTION: TRUE ArrayOf[Character]

Array of characters in string

10.3.8 ShortArray

This requires a special algorithm. See 11.7.
10.3.9 Double

This requires a special algorithm. See 11.17.
10.3.10 DoubleWithVariableBitNumber
This requires a special algorithm. See 11.14.
10.3.11 Integer

This requires a special algorithm. See 11.11.
10.3.12 IntegerWithVariableBitNumber
This requires a special algorithm. See 11.12.
10.3.13 CompressedintegerArray

This requires a special algorithm. See 11.8.
10.3.14 Unsignedinteger

This requires a special algorithm. See 11.10.
10.3.15 UnsignedintegerWithVariableBitNumber
This requires a special algorithm. See 11.13.
10.3.16 CompressedindiceArray

This requires a special algorithm. See 11.9.
10.3.17 NumberOfBitsThenUnsignedInteger
This requires a special algorithm. See 11.15.
10.3.18 CompressedEntityType

This requires a special algorithm. See 11.16.

11 1/O Algorithms

11.1 GetNumberOfBitsUsedToStoreUnsignedinteger

Computes the number of bits needed to serialize an unsigned integer.

250

© ISO 2008 — All rights reserved

The following code example shows how to compute the number of bits needed for an unsigned integer.

unsigned GetNumberOfBitsUsedToStoreUnsignedlinteger(unsigned uValue)
{

unsigned uNbBit = 1;

unsigned uTemp = 1;

while(uvalue > uTemp)

{
uTemp*=2;
uNbBit++;

return uNbBit;

3

11.2 MakePortable32BitsUnsigned

Builds an array of unsigned characters from an unsigned 32-bit integer. The final value is therefore
independent of the machine byte-ordering.

The following code example shows how to make a portable array of unsigned character values.

void MakePortable32BitsUnsigned(unsigned uValue, unsigned char pcvalue[4])
{

pcValue[0] = (unsigned char)(uValue & OxFF);
uvalue >>= 8;
pcValue[1] = (unsigned char)(uValue & OxFF);
uValue >>= 8;
pcValue[2] = (unsigned char)(uValue & OxFF);
uValue >>= 8;
pcValue[3] = (unsigned char)(uValue & OxFF);

¥

11.3 WriteBits

Writes bits from left to right.
The following code example shows how to write bits.

iBitsCount specifies the number of bits to be written.
The bits are added to a single byte (uURemainder), which is then flushed to the final device each time 8 bits
are filled.

At the end of the serialization, uRemainder is padded with zeros before writing the last byte to the device.

void WriteBits(unsigned uValue, int iBitsCount)
{
static unsigned uRemainder = 0;
static int iRemainderBits = 0;
while (iBitsCount > 0)
{
int iBitsDelta = iBitsCount + iRemainderBits - 8 ;
if (iBitsDelta == 0)
{
uRemainder |= uValue;
iRemainderBits = 0 ;
iBitsCount = 0 ;

b
else if (iBitsDelta < 0)

© IS0 2008 — All rights reserved 251

uRemainder |= uValue << (-iBitsDelta);
iRemainderBits += iBitsCount;
iBitsCount = 0 ;

¥

else

{
int loc = uvalue >> iBitsDelta;
uRemainder |= loc ;
uValue -= loc << iBitsDelta;

iBitsCount -= (8 - iRemainderBits) ;
iRemainderBits = 0 ;

3
if (iRemainderBits == 0)
// writing 1 byte (uRemainder) to the device

b
}
3

11.4 WriteString

Writes a UTF8-encoded string. The number of characters does not include a terminating null character.
The following code example shows how to write a string.

void WriteString(const char* pcString)

{
if (pcString == 0)
WriteBit(0);
else
{
unsigned i, iNumberOfCharacters = strlen(pcString);
WriteBit(1);

WriteUnsignedInteger (iNumberOfCharacters);
for (i=0;i<iNumberOfCharacters;i++)
WriteCharacter(pcString[i]);

3
}

11.5 WriteFloatAsBytes

Write a float as 4 bytes.

void WriteFloatAsBytes(float fValue)
{

union

float fFloat;
unsigned int ulnt;
JunionFloatunsignedint ;

unionFloatunsignedint.fFloat = (float) fVvalue;
unsigned uTemp = unionFloatunsignedint.ulnt;
WriteBits(uTemp & OxFF, 8);

uTemp >>= 8 ;

WriteBits(uTemp & OxFF, 8);

252 © 1SO 2008 — All rights reserved

uTemp >>= 8 ;
WriteBits(uTemp & OxFF, 8);
uTemp >>= 8 ;
WriteBits(uTemp & OxFF, 8);

11.6 WriteCharacterArray

This function writes an array of characters.
The following code example shows how to write a character array.

This function allows for both direct storage, or storage after Huffman compression (see section Huffman
Algorithm), as denoted by variable blsCompressed. The strategy whether or not compressing is left outside
the scope of the standard and can vary between implementations to try to optimize size of output file.

For instance, compression can be skipped systematically when the array size is lower than 5, since
compressed strategy leads to write at least one unsigned integer.

bWriteCompressStrategy is true by default except for calls from WriteCompressedindiceArray (See
11.9) when writing Point_reference_array in Entity description (See 7.8.8.8).

void Huffman(
char* pcArray,unsigned uCharArraySize,
unsigned*& puHuffmanArray,unsigned& uHuffmanArraySize);

// gives Huffman compression strategy on case-by-case basis
bool HuffmanCompression();

void WriteCharacterArray (
char* pcArray,unsigned uCharArraySize,
unsigned uBitNumber,bool bWriteCompressStrategy=true)

bool blsCompressed = HuffmanCompression();
iT (bWriteCompressStrategy)
WriteBoolean (blsCompressed);

if(blsCompressed)

{
// calling Huffman to create
// puHuffmanArray and uHuffmanArraySize
unsigned* puHuffmanArray;
unsigned u,uHuffmanArraySize;
Huffman(pcArray,uCharArraySize,

puHuffmanArray , uHuffmanArraySize);

WriteUnsignedinteger (uHuffmanArraySize);
for(u=0; u<uHuffmanArraySize; u++)
WriteUnsignedInteger (puHuffmanArray[u]);
3

else

WriteUnsignedinteger (uCharArraySize);

unsigned u;

for(u=0 ; u<uCharArraySize; u++)
WriteCharacter (pcArray[u]);

© IS0 2008 — Al rights reserved 253

¥

11.7 WriteShortArray

This function writes an array of shorts.

The following code example shows how to write a short array.

This function allows for both direct storage, or storage after Huffman compression (see section 12.2, Huffman
Algorithm), as denoted by variable blsCompressed. The strategy whether or not compressing is left outside
the scope of the standard and can vary between implementations to try to optimize size of output file.

void Huffman(
short* psArray,unsigned uShortArraySize,
unsigned*& puHuffmanArray,unsigned& uHuffmanArraySize);

void WriteShortArray(
short* psArray,unsigned uShortArraySize,
unsigned uBitNumber,bool blsCompressed)

WriteBoolean (blsCompressed);
iT(blsCompressed)

// calling Huffman to create
// puHuffmanArray and uHuffmanArraySize
unsigned* puHuffmanArray;
unsigned u,uHuffmanArraySize;
Huffman(psArray,uShortArraySize,
puHuffmanArray,uHuffmanArraySize);
WriteUnsignedlnteger (uHuffmanArraySize);
for(u=0; u<uHuffmanArraySize; u++)
WriteUnsignedInteger (puHuffmanArray[u]);
3
else
{
WriteUnsignedlnteger (uShortArraySize);
unsigned u;
for(u=0 ; u<uShortArraySize; u++)

WriteCharacter (psArray[u]&Ox00ff);
WriteCharacter ((psArray[u]&0xff00)>>8);
b
b

}

11.8 WriteCompressedIntegerArray

Writes an array of integers.
The following code example shows how to write a compressed integer array.

void WriteCompressedlntegerArray(
int* piArray, unsigned ulntArraySize,bool bWriteCompressStrategy=true)
{

unsigned u;
char* pcArray=new char[ulntArraySize];

for(u=1l; u<ulntArraySize; u++)

254 © 1SO 2008 — All rights reserved

pcArray[u] = (char) GetNumberOfBitsUsedToStorelnteger(piArray[ul);
WriteCharacterArray(pcArray,ulntArraySize, 6, bWriteCompressStrategy);

for(u=0;u < ulntArraySize; u++)
WritelntegerWithVariableBitNumber(piArray[u], pcArray[ul);
delete [] pcArray;

11.9 WriteCompressedindiceArray

Writes an array of indices.
The following code example shows how to write an array of indices; the indices are always positive at input.

void WriteCompressedlndiceArray(

{

¥

int* piArray, unsigned ulntArraySize,bool bWriteCompressStrategy=true)

unsigned u;
char* pcArray=new char[ulntArraySize];

pcArray[0] =
(char)GetNumberOfBitsUsedToStoreUnsignedlinteger(abs(piArray[0])+1);

int iTemp;

char cTemp;

for(u=1l; u<ulntArraySize; u++)

{

iTemp = piArray[u]-piArray[u-1];
cTemp = (char)GetNumberOfBitsUsedToStoreUnsignedlinteger(abs(iTemp))+1;
pcArray[u] = cTemp - pcArray[u-1];

WriteCharacterArray(pcArray,ulntArraySize, 6, bWriteCompressStrategy);

WritelntegerWithVariableBitNumber(piArray[0],pcArray[0]);
for(u=1l;u < ulntArraySize; u++)
WritelntegerWithVariableBitNumber(
piArray[u] - piArray[u-1], pcArray[u] + pcArray[u - 1]);
delete [] pcArray;

11.10 WriteUnsignedinteger

Writes an unsigned integer.
The following code example shows how to write an unsigned integer.

void WriteUnsignedinteger(unsigned uValue)

for(;:)
if (ualue == 0)

WriteBits(0, 1);
return;

b

WriteBits(1, 1);
WriteBits(uvalue & OxFF, 8);
uValue >>= 8;

© ISO 2008 — Al rights reserved

255

11.11 Writelnteger

Writes an integer.
The following code example shows how to write an integer.

void Writelnteger(int iValue)
if (ivalue == 0)

WriteBits(0, 1) ;
return ;

3
for(;:)
{

int loc = iValue & OxFF;

WriteBits(1, 1);

WriteBits(loc, 8);

ivalue >>= 8 ;

if (((ivalue == 0) && ((loc & 0x80) == 0)) |1
((ivalue == -1) && ((loc & 0x80) != 0)))

WriteBits (0, 1) ;
return ;

¥
}

}

11.12 WritelntegerWithVariableBitNumber

Writes an integer using a specified number of bits.

The first bit describes the sign. It is set to true if the integer is positive and false if it is negative. The
remaining bits describe the absolute value of the integer, beginning with the most significant bit.

The following code example shows how to write a signed integer with a variable number of bits.

void WritelntegerWithVariableBitNumber(int iValue,unsigned uBitNumber)

{
WriteBoolean (iValue < 0);
WriteUnsignedintegerWithVariableBitNumber(abs(ivValue), uBitNumber - 1);

}

11.13 WriteUnsignedintegerWithVariableBitNumber

Writes an unsigned integer using a specified number of bits.
The bits describe the value of the unsigned integer, beginning with the most significant bit.

The following code example shows how to write an unsigned integer with a variable number of bits.

void WriteUnsignedlintegerWithVariableBitNumber(
unsigned uValue, unsigned uBitNumber)
{

unsigned u;
for(u=0; u<uBitNumber; u++)

if(uvalue >= 1<<(uBitNumber - 1 - u))
{

WriteBoolean (true);
uValue -= 1<<(uBitNumber - 1 - u);

¥

256 © IS0 2008 — Al rights reserved

else

WriteBoolean(false);
b
3

}

11.14 WriteDoubleWithVariableBitNumber

Writes a double using a specified number of bits and a tolerance.
The following code example shows how to write a double with a variable number of bits.

uBitNumber must be less than 31.

void WriteDoubleWithVariableBitNumber(
double dvalue, double dTolerance, unsigned uBitNumber)

{
WriteBoolean (dvalue < 0);
// calling functions must ensure no overflow
unsigned uTempValue = (unsigned) (fabs(dValue) / dTolerance);
if(fabs(dvalue) / dTolerance - uTempValue > 0.5)
uTempValue++;
unsigned u;
for(u = 0; u < uBitNumber - 1; u++)
if(uTempValue>= 1<< (uBitNumber - 2 - u))
{
WriteBoolean(true);
uTempValue -= 1<< (uBitNumber - 2 - u);
else
{
WriteBoolean(false);
b
}
}

11.15 WriteNumberOfBitsThenUnsignedinteger

Writes the number of bits followed by an unsigned integer whose size corresponds to that number of bits.
The following code example shows how to write the number of bits followed by an unsigned integer.

void WriteNumberOfBitsThenUnsignedInteger(unsigned uValue)

{
unsigned uNbBit =
GetNumberOfBitsUsedToStoreUnsignedInteger(uValue);
WriteUnsignedIntegerWithVariableBitNumber (uNbBit,5);
WriteUnsignedlntegerWithVariableBitNumber(uValue,uNbBit);
}

11.16 WriteCompressedEntityType

© IS0 2008 — All rights reserved 257

Writes a curve or surface type for compressed B-rep data.
The following code example shows how to write a curve or surface type.

void WriteCompressedEntityType(
unsigned uEntityType, bool blsACurve)

{

WriteBoolean (blIsACurve);
if (blsACurve)

{

switch (UEntityType)

{
case PRC_HCG_Line:
// writing 2 bits (00)
return WriteUnsignedIntegerWithVariableBitNumber

case PRC_HCG_Circle:
// writing 2 bits (01)
return WriteUnsignedintegerWithVariableBitNumber

case PRC_HCG_BSplineHermiteCurve :
// writing 2 bits (10)
return WriteUnsignedIntegerWithVariableBitNumber

case PRC_HCG_Ellipse :
// writing 2 bits (11) then 2 other (00)
return WriteUnsignedIntegerWithVariableBitNumber

case PRC_HCG_CompositeCurve :
// writing 2 bits (11) then 2 other (01)
return WriteUnsignedIntegerWithVariableBitNumber

¥

else

{

}
3

258

© , 2);

@, 2);

@, 2);

((B<<2)+0, 4);

(@<<2) +1, 48;

return WriteUnsignedlntegerWithVariableBitNumber (uEntityType , 4);

© ISO 2008 — All rights reserved

11.17 WriteDouble

11.17.1 General

Macros PRC_LITTLE_ENDIAN and PRC_BIG_ENDIAN are used to define the byte order for binary values

(must be set depending on the compilation platform).

11.17.2 Data definition for double storage

Contains an array of sCodageOfFrequentDoubleOrExponent used in Procedure for WriteDouble. This

array is sorted to allow the use of a binary search to find values.

#include <memory.h>
#include <stdlib.h>
#include <math.h>

void WriteBits(unsigned value, unsigned bits_count);

define PRC_LITTLE_ENDIAN // For compilation on Windows

#define NUMBEROFELEMENTINACOFDOE (2077)
enum ValueType

VT_double,
VT_exponent

X

/* Coding of a frequent double or exponent value. */
typedef struct

/* Value type (VT_double or VT_exponent) */
short Type;

/* Number of bits. */
short NumberOfBits;

/* Bit values. */
unsigned Bits;

/* Unsigned or double value. */
union
{
unsigned ul[2]; /* Two unsigned values. */
double Value; /* Double value. */
} u2uod;
} sCodageOfFrequentDoubleOrExponent;

#if defined(PRC_BIG_ENDIAN)

define DOUBLEWITHTWODWORDINTREE(upper, lower)
#elif defined(PRC_LITTLE_ENDIAN)

define DOUBLEWITHTWODWORDINTREE(upper, lower)
#endif

{upper, lower}

{lower ,upper}

sCodageOfFrequentDoubleOrExponent acofdoe[[NUMBEROFELEMENT INACOFDOE]=

{VT_double,2,0x1,DOUBLEWITHTWODWORD INTREE(0x00000000,0x00000000)},

{VT_exponent,22,0xd1d32,DOUBLEWITHTWODWORD INTREE (0x00000000,0x00000000) },
{VT_exponent,22,0xd1d33,DOUBLEWITHTWODWORD INTREE (0x00100000,0x00000000)},

© ISO 2008 — Al rights reserved

259

{VT_exponent,22,0x¥78d8,DOUBLEWI THTWODWORD INTREE (0x00200000,0x00000000)},
{VT_exponent,22,0xf78d9,DOUBLEWITHTWODWORD INTREE(0x00300000,0x00000000)},
{VT_exponent, 22, 0xf78da, DOUBLEWI THTWODWORD I NTREE (000400000 , 0x00000000) },
{VT_exponent,22,0xf78db,DOUBLEWITHTWODWORD INTREE (0x00500000,0x00000000)},
{VT_exponent,22,0xf78dc,DOUBLEWITHTWODWORD INTREE(0x00600000,0x00000000)},
{VT_exponent,22,0xf78dd,DOUBLEWITHTWODWORD INTREE (0x00700000,0x00000000)},
{VT_exponent,22,0xf78de ,DOUBLEWI THTWODWORD INTREE (0x00800000,0x00000000)},
{VT_exponent,22,0xf78df,DOUBLEWITHTWODWORD INTREE (0x00900000,0x00000000)},
{VT_exponent,22,0xf78e0,DOUBLEWITHTWODWORD INTREE (0x00a00000 ,0x00000000) },
{VT_exponent,22,0xF78e1,DOUBLEWI THTWODWORD INTREE (0x00b00000 , 0x00000000) },
{VT_exponent,22,0xf78e2,DOUBLEWI THTWODWORD INTREE (0x00c00000,0x00000000)},
{VT_exponent,22,0xf78e3,DOUBLEWITHTWODWORD INTREE (0x00d00000 ,0x00000000)},
{VT_exponent, 22 ,0xf78e4 , DOUBLEWI THTWODWORD INTREE (0x00e00000 ,0x00000000)},
{VT_exponent,22,0xf78e5,DOUBLEWI THTWODWORD INTREE (0x00¥00000,0x00000000)},
{VT_exponent,22,0xf78e6,DOUBLEWITHTWODWORD INTREE(0x01000000,0x00000000)},
{VT_exponent,22,0xf78e7,DOUBLEWITHTWODWORD INTREE(0x01100000,0x00000000)},
{VT_exponent,22,0xf78e8,DOUBLEWI THTWODWORD INTREE (0x01200000,0x00000000)},
{VT_exponent,22,0xf78e9,DOUBLEWITHTWODWORD INTREE(0x01300000,0x00000000)},
{VT_exponent, 22 ,0xf78ea, DOUBLEWI THTWODWORD INTREE (0x01400000 ,0x00000000)},
{VT_exponent,22,0xF78eb, DOUBLEWI THTWODWORD INTREE (0x01500000, 0x00000000) },
{VT_exponent,22,0xf78ec,DOUBLEWITHTWODWORD INTREE (0x01600000,0x00000000)},
{VT_exponent,22,0xf78ed,DOUBLEWITHTWODWORD INTREE(0x01700000,0x00000000)},
{VT_exponent,22,0xf78ee,DOUBLEWITHTWODWORD INTREE (0x01800000,0x00000000)},
{VT_exponent,22,0xf78ef,DOUBLEWITHTWODWORD INTREE(0x01900000,0x00000000)},
{VT_exponent,22,0xf78f0,DOUBLEWITHTWODWORD INTREE (0x01a00000,0x00000000)},
{VT_exponent,22,0xf78F1,DOUBLEWITHTWODWORD INTREE(0x01b00000,0x00000000)},
{VT_exponent,22,0xf78F2,DOUBLEWI THTWODWORD INTREE (0x01c00000,0x00000000)},
{VT_exponent,22,0xf78F3,DOUBLEWITHTWODWORD INTREE (0x01d00000,0x00000000)},
{VT_exponent,22,0xf78f4,DOUBLEWITHTWODWORD INTREE (0x01e00000,0x00000000)},
{VT_exponent,22,0xF78f5, DOUBLEWI THTWODWORD INTREE (0x01F00000, 0x00000000) },
{VT_exponent,22,0xf78F6,DOUBLEWI THTWODWORD INTREE (0x02000000,0x00000000)},
{VT_exponent,22,0xf78F7,DOUBLEWITHTWODWORD INTREE(0x02100000,0x00000000)},
{VT_exponent,22,0xf78f8,DOUBLEWITHTWODWORD INTREE (0x02200000,0x00000000)},
{VT_exponent,22,0xf78F9,DOUBLEWITHTWODWORD INTREE (0x02300000,0x00000000)},
{VT_exponent,22,0xf78Fa,DOUBLEWITHTWODWORD INTREE (0x02400000,0x00000000)},
{VT_exponent,22,0xf78Fb,DOUBLEWITHTWODWORD INTREE(0x02500000,0x00000000)},
{VT_exponent,22,0x¥78Fc,DOUBLEWITHTWODWORD INTREE (0x02600000,0x00000000)},
{VT_exponent,22,0xf78Fd,DOUBLEWITHTWODWORD INTREE (0x02700000,0x00000000)},
{VT_exponent,22,0xf78fe,DOUBLEWITHTWODWORD INTREE (0x02800000,0x00000000)},
{VT_exponent,22,0xF78FF,DOUBLEWI THTWODWORD INTREE (0x02900000, 0x00000000) },
{VT_exponent, 22 ,0x3a8300 , DOUBLEWI THTWODWORD I NTREE (0x02a00000 , 0x00000000) } ,
{VT_exponent,22,0x3a8301,DOUBLEWITHTWODWORD INTREE (0x02b00000,0x00000000)},
{VT_exponent,22,0x3a8302,DOUBLEWITHTWODWORD INTREE(0x02c00000,0x00000000)},
{VT_exponent,22,0x3a8303,DOUBLEWITHTWODWORD INTREE (0x02d00000,0x00000000)},
{VT_exponent,22,0x3a8304 ,DOUBLEWITHTWODWORD INTREE (0x02e00000,0x00000000)},
{VT_exponent,22,0x3a8305,DOUBLEWITHTWODWORD INTREE (0x02f00000,0x00000000)},
{VT_exponent,22,0x3a8306 ,DOUBLEWITHTWODWORD INTREE (0x03000000,0x00000000)},
{VT_exponent,22,0x3a8307 ,DOUBLEWITHTWODWORD INTREE (0x03100000,0x00000000)},
{VT_exponent,22,0x3a8308,DOUBLEWITHTWODWORD INTREE (0x03200000,0x00000000)},
{VT_exponent,22,0x3a8309 , DOUBLEW I THTWODWORD INTREE (0x03300000, 0x00000000)},
{VT_exponent, 22 ,0x3a830a, DOUBLEWI THTWODWORD I NTREE (0x03400000 , 0x00000000) } ,
{VT_exponent,22,0x3a830b,DOUBLEWITHTWODWORD INTREE (0x03500000,0x00000000)},
{VT_exponent,22,0x3a830c,DOUBLEWITHTWODWORD INTREE (0x03600000,0x00000000)},
{VT_exponent,22,0x3a830d,DOUBLEWITHTWODWORD INTREE (0x03700000,0x00000000)},
{VT_exponent,22,0x3a830e,DOUBLEWITHTWODWORD INTREE (0x03800000,0x00000000)},
{VT_exponent,22,0x3a830F,DOUBLEWITHTWODWORD INTREE (0x03900000,0x00000000)},
{VT_exponent,22,0x3a8310, DOUBLEWI THTWODWORD I NTREE (0x03a00000 , 0x00000000) } ,
{VT_exponent,22,0x3a8311,DOUBLEWITHTWODWORD INTREE (0x03b00000,0x00000000)},
{VT_exponent,22,0x3a8312,DOUBLEWITHTWODWORD INTREE (0x03c00000,0x00000000)},
{VT_exponent,22,0x3a8313,DOUBLEWITHTWODWORD INTREE (0x03d00000,0x00000000)},
{VT_exponent, 22 ,0x3a8314 , DOUBLEWI THTWODWORD I NTREE (0x03€00000 , 0x00000000) } ,

260 © IS0 2008 — Al rights reserved

{VT_exponent,22,0x3a8315,DOUBLEWITHTWODWORD INTREE (0x03¥00000,0x00000000)},
{VT_exponent,22,0x3a8316,DOUBLEWI THTWODWORD INTREE (0x04000000,0x00000000)},
{VT_exponent,22,0x3a8317 ,DOUBLEWITHTWODWORD INTREE (0x04100000,0x00000000)},
{VT_exponent,22,0x3a8318,DOUBLEWITHTWODWORD INTREE (0x04200000,0x00000000)},
{VT_exponent,22,0x3a8319,DOUBLEWITHTWODWORD INTREE (0x04300000,0x00000000)},
{VT_exponent, 22 ,0x3a831a, DOUBLEWI THTWODWORD INTREE (0x04400000 , 0x00000000) } ,
{VT_exponent,22,0x3a831b,DOUBLEWITHTWODWORD INTREE (0x04500000,0x00000000)},
{VT_exponent,22,0x3a831c,DOUBLEWITHTWODWORD INTREE (0x04600000,0x00000000)},
{VT_exponent,22,0x3a831d, DOUBLEWI THTWODWORD INTREE (0x04700000 ,0x00000000)},
{VT_exponent, 22 ,0x3a831e , DOUBLEWI THTWODWORD INTREE (0x04800000 ,0x00000000)} ,
{VT_exponent,22,0x3a831Ff,DOUBLEWITHTWODWORD INTREE (0x04900000,0x00000000)},
{VT_exponent,22,0x3a8320,DOUBLEWITHTWODWORD INTREE (0x04a00000,0x00000000)},
{VT_exponent,22,0x3a8321,DOUBLEWITHTWODWORD INTREE (0x04b00000,0x00000000)},
{VT_exponent,22,0x3a8322,DOUBLEWITHTWODWORD INTREE (0x04c00000,0x00000000)},
{VT_exponent,22,0x3a8323,DOUBLEWITHTWODWORD INTREE (0x04d00000,0x00000000)},
{VT_exponent, 22 ,0x3a8324 , DOUBLEWI THTWODWORD INTREE (0x04e00000 , 0x00000000) } ,
{VT_exponent,22,0x3a8325,DOUBLEWITHTWODWORD INTREE (0x04f00000,0x00000000)},
{VT_exponent,22,0x3a8326 ,DOUBLEWITHTWODWORD INTREE (0x05000000,0x00000000)},
{VT_exponent,22,0x3a8327 ,DOUBLEWITHTWODWORD INTREE (0x05100000,0x00000000)},
{VT_exponent,22,0x3a8328,DOUBLEWITHTWODWORD INTREE (0x05200000,0x00000000)},
{VT_exponent,22,0x3a8329,DOUBLEWITHTWODWORD INTREE (0x05300000,0x00000000)},
{VT_exponent,22,0x3a832a,DOUBLEWITHTWODWORD INTREE (0x05400000,0x00000000)},
{VT_exponent,22,0x3a832b,DOUBLEWI THTWODWORD INTREE (0x05500000,0x00000000) },
{VT_exponent,22,0x3a832c,DOUBLEWITHTWODWORD INTREE (0x05600000,0x00000000)},
{VT_exponent,22,0x3a832d,DOUBLEWITHTWODWORD INTREE (0x05700000,0x00000000)},
{VT_exponent,22,0x3a832e,DOUBLEWITHTWODWORD INTREE (0x05800000,0x00000000)},
{VT_exponent,22,0x3a832F,DOUBLEWI THTWODWORD INTREE (0x05900000,0x00000000)},
{VT_exponent,22,0x3a8330,DOUBLEWITHTWODWORD INTREE (0x05a00000,0x00000000)},
{VT_exponent,22,0x3a8331,DOUBLEWITHTWODWORD INTREE (0x05b00000,0x00000000)},
{VT_exponent,22,0x3a8332,DOUBLEWITHTWODWORD INTREE (0x05c00000,0x00000000)},
{VT_exponent,22,0x3a8333,DOUBLEWITHTWODWORD INTREE (0x05d00000,0x00000000)},
{VT_exponent,22,0x3a8334,DOUBLEWITHTWODWORD INTREE (0x05e00000,0x00000000) } ,
{VT_exponent,22,0x3a8335,DOUBLEWITHTWODWORD INTREE (0x05f00000 ,0x00000000)},
{VT_exponent,22,0x3a8336,DOUBLEWITHTWODWORD INTREE (0x06000000,0x00000000)},
{VT_exponent,22,0x3a8337 ,DOUBLEWITHTWODWORD INTREE (0x06100000,0x00000000)},
{VT_exponent,22,0x3a8338,DOUBLEWITHTWODWORD INTREE (0x06200000,0x00000000)},
{VT_exponent,22,0x3a8339,DOUBLEWITHTWODWORD INTREE (0x06300000,0x00000000)},
{VT_exponent,22,0x3a833a,DOUBLEWITHTWODWORD INTREE (0x06400000,0x00000000)},
{VT_exponent,22,0x3a833b,DOUBLEWITHTWODWORD INTREE (0x06500000 ,0x00000000)},
{VT_exponent,22,0x3a833c,DOUBLEWITHTWODWORD INTREE (0x06600000 ,0x00000000)},
{VT_exponent,22,0x3a833d, DOUBLEWI THTWODWORD INTREE(0x06700000 ,0x00000000)},
{VT_exponent,22,0x3a833e,DOUBLEWITHTWODWORD INTREE (0x06800000,0x00000000)},
{VT_exponent,22,0x3a833f,DOUBLEWITHTWODWORD INTREE (0x06900000 ,0x00000000)},
{VT_exponent,22,0x3a8340,DOUBLEWITHTWODWORD INTREE (0x06a00000,0x00000000)},
{VT_exponent,22,0x3a8341,DOUBLEWITHTWODWORD INTREE (0x06b00000,0x00000000)},
{VT_exponent,22,0x3a8342,DOUBLEWITHTWODWORD INTREE (0x06c00000,0x00000000)},
{VT_exponent,22,0x3a8343,DOUBLEWITHTWODWORD INTREE (0x06d00000,0x00000000)},
{VT_exponent,22,0x3a8344 ,DOUBLEWITHTWODWORD INTREE (0x06e00000,0x00000000)},
{VT_exponent,22,0x3a8345,DOUBLEWITHTWODWORD INTREE (0x06f00000 ,0x00000000)},
{VT_exponent, 22 ,0x3a8346 , DOUBLEWI THTWODWORD INTREE (0x07000000 , 0x00000000) } ,
{VT_exponent,22,0x3a8347 ,DOUBLEWITHTWODWORD INTREE(0x07100000,0x00000000)},
{VT_exponent,22,0x3a8348,DOUBLEWITHTWODWORD INTREE(0x07200000,0x00000000)},
{VT_exponent,22,0x3a8349,DOUBLEWITHTWODWORD INTREE (0x07300000,0x00000000)},
{VT_exponent,22,0x3a834a,DOUBLEWITHTWODWORD INTREE (0x07400000,0x00000000)},
{VT_exponent,22,0x3a834b,DOUBLEWITHTWODWORD INTREE (0x07500000,0x00000000)},
{VT_exponent,22,0x3a834c,DOUBLEWITHTWODWORD INTREE(0x07600000,0x00000000)},
{VT_exponent,22,0x3a834d, DOUBLEWITHTWODWORD INTREE(0x07700000,0x00000000)},
{VT_exponent,22,0x3a834e,DOUBLEWITHTWODWORD INTREE (0x07800000,0x00000000)},
{VT_exponent,22,0x3a834f,DOUBLEWITHTWODWORD INTREE (0x07900000 ,0x00000000)},
{VT_exponent,22,0x3a8350, DOUBLEWI THTWODWORD INTREE (0x07a00000 ,0x00000000)} ,
{VT_exponent,22,0x3a8351, DOUBLEWITHTWODWORD INTREE(0x07b00000 ,0x00000000)},

© IS0 2008 — All rights reserved 261

{VT_exponent,22,0x3a8352,DOUBLEWI THTWODWORD INTREE (0x07c00000,0x00000000)},
{VT_exponent,22,0x3a8353,DOUBLEWITHTWODWORD INTREE(0x07d00000,0x00000000)},
{VT_exponent, 22 ,0x3a8354 , DOUBLEWI THTWODWORD INTREE (0x07e00000 , 0x00000000) },
{VT_exponent,22,0x3a8355,DOUBLEWI THTWODWORD INTREE (0x07¥00000,0x00000000)},
{VT_exponent,22,0x3a8356 ,DOUBLEWITHTWODWORD INTREE (0x08000000,0x00000000)},
{VT_exponent,22,0x3a8357 ,DOUBLEWITHTWODWORD INTREE (0x08100000,0x00000000)},
{VT_exponent,22,0x3a8358,DOUBLEWI THTWODWORD INTREE (0x08200000,0x00000000)},
{VT_exponent,22,0x3a8359,DOUBLEWI THTWODWORD INTREE (0x08300000,0x00000000)},
{VT_exponent,22,0x3a835a, DOUBLEWI THTWODWORD INTREE (0x08400000,0x00000000)},
{VT_exponent, 22 ,0x3a835b , DOUBLEW I THTWODWORD INTREE (0x08500000, 0x00000000)},
{VT_exponent,22,0x3a835c,DOUBLEWI THTWODWORD INTREE (0x08600000,0x00000000)},
{VT_exponent,22,0x3a835d,DOUBLEWITHTWODWORD INTREE (0x08700000,0x00000000)},
{VT_exponent,22,0x3a835e, DOUBLEWI THTWODWORD INTREE (0x08800000,0x00000000) },
{VT_exponent,22,0x3a835f,DOUBLEWI THTWODWORD INTREE (0x08900000,0x00000000)},
{VT_exponent,22,0x3a8360,DOUBLEWITHTWODWORD INTREE (0x08a00000,0x00000000)},
{VT_exponent,22,0x3a8361,DOUBLEWITHTWODWORD INTREE (0x08b00000 ,0x00000000)},
{VT_exponent,22,0x3a8362,DOUBLEWITHTWODWORD INTREE (0x08c00000,0x00000000)},
{VT_exponent,22,0x3a8363,DOUBLEWITHTWODWORD INTREE (0x08d00000,0x00000000)},
{VT_exponent,22,0x3a8364 ,DOUBLEWI THTWODWORD INTREE (0x08e00000,0x00000000)},
{VT_exponent, 22 ,0x3a8365 , DOUBLEW I THTWODWORD INTREE (0x08£00000, 0x00000000)},
{VT_exponent,22,0x3a8366,DOUBLEWITHTWODWORD INTREE (0x09000000,0x00000000)},
{VT_exponent,22,0x3a8367 ,DOUBLEWITHTWODWORD INTREE (0x09100000,0x00000000)},
{VT_exponent,22,0x3a8368,DOUBLEWITHTWODWORD INTREE (0x09200000,0x00000000)},
{VT_exponent,22,0x3a8369,DOUBLEWITHTWODWORD INTREE (0x09300000,0x00000000)},
{VT_exponent,22,0x3a836a,DOUBLEWI THTWODWORD INTREE (0x09400000,0x00000000)},
{VT_exponent,22,0x3a836b,DOUBLEWITHTWODWORD INTREE (0x09500000,0x00000000)},
{VT_exponent,22,0x3a836¢c,DOUBLEWITHTWODWORD INTREE (0x09600000,0x00000000)},
{VT_exponent,22,0x3a836d,DOUBLEWITHTWODWORD INTREE (0x09700000,0x00000000)},
{VT_exponent,22,0x3a836e,DOUBLEWITHTWODWORD INTREE (0x09800000,0x00000000)},
{VT_exponent, 22 ,0x3a836, DOUBLEW I THTWODWORD INTREE (0x09900000 , 0x00000000)},
{VT_exponent,22,0x3a8370,DOUBLEWI THTWODWORD INTREE (0x09a00000,0x00000000)},
{VT_exponent,22,0x3a8371,DOUBLEWITHTWODWORD INTREE (0x09b00000,0x00000000)},
{VT_exponent,22,0x3a8372,DOUBLEWITHTWODWORD INTREE(0x09c00000,0x00000000)},
{VT_exponent,22,0x3a8373,DOUBLEWI THTWODWORD INTREE (0x09d00000,0x00000000)},
{VT_exponent,22,0x3a8374,DOUBLEWITHTWODWORD INTREE (0x09e00000,0x00000000)},
{VT_exponent,22,0x3a8375,DOUBLEWI THTWODWORD INTREE (0x09f00000,0x00000000)},
{VT_exponent,22,0x3a8376,DOUBLEWITHTWODWORD INTREE (0x0a000000,0x00000000)},
{VT_exponent,22,0x3a8377,DOUBLEWITHTWODWORD INTREE (0x0a100000,0x00000000)},
{VT_exponent,22,0x3a8378,DOUBLEWITHTWODWORD INTREE (0x0a200000,0x00000000)},
{VT_exponent,22,0x3a8379,DOUBLEWITHTWODWORD INTREE (0x0a300000,0x00000000)},
{VT_exponent, 22 ,0x3a837a, DOUBLEWI THTWODWORD I NTREE (0x0a400000 , 0x00000000) } ,
{VT_exponent,22,0x3a837b,DOUBLEWITHTWODWORD INTREE (0x0a500000,0x00000000)},
{VT_exponent,22,0x3a837c,DOUBLEWITHTWODWORD INTREE (0x0a600000,0x00000000)},
{VT_exponent,22,0x3a837d,DOUBLEWI THTWODWORD INTREE (0x0a700000,0x00000000)},
{VT_exponent,22,0x3a837e,DOUBLEWI THTWODWORD INTREE (0x0a800000,0x00000000)},
{VT_exponent,22,0x3a837F,DOUBLEWITHTWODWORD INTREE (0x0a900000,0x00000000)},
{VT_exponent,22,0x3a8380,DOUBLEWI THTWODWORD INTREE (0x0aa00000,0x00000000)},
{VT_exponent,22,0x3a8381,DOUBLEWITHTWODWORD INTREE (0x0ab00000,0x00000000)},
{VT_exponent,22,0x3a8382,DOUBLEWITHTWODWORD INTREE (0x0ac00000,0x00000000)},
{VT_exponent,22,0x3a8383,DOUBLEWITHTWODWORD INTREE (0x0ad00000,0x00000000)},
{VT_exponent, 22 ,0x3a8384 , DOUBLEWI THTWODWORD I NTREE (0x0ae00000 , 0x00000000) } ,
{VT_exponent,22,0x3a8385,DOUBLEWI THTWODWORD INTREE (0x0af00000,0x00000000)},
{VT_exponent,22,0x3a8386,DOUBLEWITHTWODWORD INTREE (0x0b000000,0x00000000)},
{VT_exponent,22,0x3a8387 ,DOUBLEWI THTWODWORD INTREE (0x0b100000,0x00000000)},
{VT_exponent,22,0x3a8388,DOUBLEWITHTWODWORD INTREE (0x0b200000,0x00000000)},
{VT_exponent,22,0x3a8389,DOUBLEWITHTWODWORD INTREE (0x0b300000,0x00000000)},
{VT_exponent, 22 ,0x3a838a, DOUBLEWI THTWODWORD I NTREE (0x0b400000 , 0x00000000) } ,
{VT_exponent,22,0x3a838b,DOUBLEWITHTWODWORD INTREE (0x0b500000,0x00000000)},
{VT_exponent,22,0x3a838c,DOUBLEWITHTWODWORD INTREE (0x0b600000 ,0x00000000)},
{VT_exponent,22,0x3a838d,DOUBLEWITHTWODWORD INTREE (0x0b700000,0x00000000)},
{VT_exponent, 22 ,0x3a838e , DOUBLEWI THTWODWORD I NTREE (0X0b800000 , 0x00000000) } ,

262 © 1SO 2008 — All rights reserved

{VT_exponent,22,0x3a838F,DOUBLEWITHTWODWORD INTREE (0x0b900000,0x00000000)},
{VT_exponent,22,0x3a8390,DOUBLEWITHTWODWORD INTREE (0x0ba00000 ,0x00000000)},
{VT_exponent,22,0x3a8391,DOUBLEWI THTWODWORD INTREE (0x0bb00000,0x00000000) },
{VT_exponent,22,0x3a8392,DOUBLEWITHTWODWORD INTREE (0x0bc00000,0x00000000)},
{VT_exponent,22,0x3a8393,DOUBLEWITHTWODWORD INTREE (0x0bd00000,0x00000000)},
{VT_exponent,22,0x3a8394 ,DOUBLEWITHTWODWORD INTREE (0x0be00000 ,0x00000000) },
{VT_exponent,22,0x3a8395,DOUBLEWITHTWODWORD INTREE (0x0b¥00000,0x00000000)},
{VT_exponent,22,0x3a8396 ,DOUBLEWITHTWODWORD INTREE (0x0c000000,0x00000000)},
{VT_exponent,22,0x3a8397 ,DOUBLEWI THTWODWORD INTREE (0x0c100000,0x00000000)},
{VT_exponent, 22 ,0x3a8398 , DOUBLEW I THTWODWORD INTREE (0x0c200000 ,0x00000000)},
{VT_exponent,22,0x3a8399,DOUBLEWITHTWODWORD INTREE (0x0c300000,0x00000000)},
{VT_exponent,22,0x3a839a,DOUBLEWITHTWODWORD INTREE (0x0c400000 ,0x00000000)},
{VT_exponent,22,0x3a839b,DOUBLEWI THTWODWORD INTREE (0x0c500000,0x00000000)},
{VT_exponent,22,0x3a839c,DOUBLEWITHTWODWORD INTREE (0x0c600000,0x00000000)},
{VT_exponent,22,0x3a839d,DOUBLEWITHTWODWORD INTREE (0x0c700000,0x00000000)},
{VT_exponent,22,0x3a839e ,DOUBLEWITHTWODWORD INTREE (0x0c800000 ,0x00000000)},
{VT_exponent,22,0x3a839Ff,DOUBLEWITHTWODWORD INTREE (0x0c900000,0x00000000)},
{VT_exponent,22,0x3a83a0,DOUBLEWITHTWODWORD INTREE (0x0ca00000,0x00000000)},
{VT_exponent,22,0x3a83al,DOUBLEWITHTWODWORD INTREE (0x0cb00000,0x00000000)},
{VT_exponent,22,0x3a83a2,DOUBLEWITHTWODWORD INTREE (0x0cc00000,0x00000000)},
{VT_exponent,22,0x3a83a3,DOUBLEWITHTWODWORD INTREE (0x0cd00000,0x00000000)},
{VT_exponent,22,0x3a83a4 ,DOUBLEWITHTWODWORD INTREE (0x0ce00000 ,0x00000000)},
{VT_exponent,22,0x3a83a5, DOUBLEWI THTWODWORD INTREE (0x0cf00000,0x00000000)},
{VT_exponent,22,0x3a83a6,DOUBLEWITHTWODWORD INTREE (0x0d000000,0x00000000)},
{VT_exponent,22,0x3a83a7 ,DOUBLEWITHTWODWORD INTREE (0x0d100000,0x00000000)},
{VT_exponent,22,0x3a83a8,DOUBLEWITHTWODWORD INTREE (0x0d200000,0x00000000)},
{VT_exponent,22,0x3a83a9,DOUBLEWITHTWODWORD INTREE (0x0d300000,0x00000000)},
{VT_exponent,22,0x3a83aa, DOUBLEWI THTWODWORD INTREE (0x0d400000,0x00000000)},
{VT_exponent,22,0x3a83ab, DOUBLEWI THTWODWORD INTREE (0x0d500000,0x00000000)},
{VT_exponent,22,0x3a83ac,DOUBLEWITHTWODWORD INTREE(0x0d600000 ,0x00000000)},
{VT_exponent,22,0x3a83ad,DOUBLEWITHTWODWORD INTREE (0x0d700000,0x00000000)},
{VT_exponent,22,0x3a83ae ,DOUBLEWITHTWODWORD INTREE (0x0d800000 ,0x00000000)},
{VT_exponent,22,0x3a83af,DOUBLEWITHTWODWORD INTREE (0x0d900000 ,0x00000000)},
{VT_exponent,22,0x3a83b0,DOUBLEWITHTWODWORD INTREE (0x0da00000,0x00000000)},
{VT_exponent,22,0x3a83b1,DOUBLEWITHTWODWORD INTREE (0x0db00000,0x00000000)},
{VT_exponent,22,0x3a83b2,DOUBLEWITHTWODWORD INTREE (0x0dc00000,0x00000000)},
{VT_exponent,22,0x3a83b3,DOUBLEWITHTWODWORD INTREE (0x0dd00000,0x00000000)},
{VT_exponent,22,0x3a83b4 ,DOUBLEWITHTWODWORD INTREE (0x0de00000,0x00000000)},
{VT_exponent,22,0x3a83b5,DOUBLEWITHTWODWORD INTREE (0x0df00000 ,0x00000000)},
{VT_exponent,22,0x3a83b6 ,DOUBLEWITHTWODWORD INTREE (0x0e000000,0x00000000)},
{VT_exponent, 22,0x3a83b7 , DOUBLEWI THTWODWORD INTREE (0x0e100000 , 0x00000000) },
{VT_exponent,22,0x3a83b8,DOUBLEWITHTWODWORD INTREE (0x0e200000,0x00000000)},
{VT_exponent,22,0x3a83b9,DOUBLEWITHTWODWORD INTREE (0x0e300000,0x00000000)},
{VT_exponent,22,0x3a83ba,DOUBLEWITHTWODWORD INTREE (0x0e400000,0x00000000)},
{VT_exponent,22,0x3a83bb,DOUBLEWITHTWODWORD INTREE (0x0e500000,0x00000000)},
{VT_exponent,22,0x3a83bc,DOUBLEWITHTWODWORD INTREE (0x0e600000,0x00000000)},
{VT_exponent,22,0x3a83bd,DOUBLEWITHTWODWORD INTREE (0x0e700000,0x00000000)},
{VT_exponent,22,0x3a83be ,DOUBLEWITHTWODWORD INTREE (0x0e800000,0x00000000)},
{VT_exponent,22,0x3a83bf,DOUBLEWITHTWODWORD INTREE (0x0e900000 ,0x00000000)},
{VT_exponent,22,0x3a83c0,DOUBLEWITHTWODWORD INTREE (0x0ea00000 ,0x00000000)},
{VT_exponent, 22,0x3a83c1, DOUBLEWI THTWODWORD INTREE(0x0eb00000 , 0x00000000) },
{VT_exponent,22,0x3a83c2,DOUBLEWITHTWODWORD INTREE (0x0ec00000,0x00000000)},
{VT_exponent,22,0x3a83c3,DOUBLEWITHTWODWORD INTREE (0x0ed00000 ,0x00000000)},
{VT_exponent,22,0x3a83c4,DOUBLEWITHTWODWORD INTREE (0x0ee00000,0x00000000)},
{VT_exponent,22,0x3a83c5,DOUBLEWITHTWODWORD INTREE (0x0ef00000,0x00000000)},
{VT_exponent,22,0x3a83c6,DOUBLEWITHTWODWORD INTREE (0x0f000000,0x00000000)},
{VT_exponent, 22,0x3a83c7 , DOUBLEWI THTWODWORD INTREE(0x0F100000 , 0x00000000) },
{VT_exponent,22,0x3a83c8,DOUBLEWITHTWODWORD INTREE (0x0f200000,0x00000000)},
{VT_exponent,22,0x3a83c9,DOUBLEWITHTWODWORD INTREE (0x0f300000,0x00000000)},
{VT_exponent, 22 ,0x3a83ca, DOUBLEWI THTWODWORD INTREE (0x0F400000 ,0x00000000)},
{VT_exponent, 22, 0x3a83ch, DOUBLEWI THTWODWORD INTREE (0X0F500000 , 0x00000000) },

© IS0 2008 — Al rights reserved 263

{VT_exponent,22,0x3a83cc,DOUBLEWITHTWODWORD INTREE (0x0f600000,0x00000000)},
{VT_exponent,22,0x3a83cd,DOUBLEWITHTWODWORD INTREE (0x0f700000,0x00000000)},
{VT_exponent, 22 ,0x3a83ce , DOUBLEW I THTWODWORD INTREE (0x0F800000, 0x00000000)},
{VT_exponent,22,0x3a83cf,DOUBLEWITHTWODWORD INTREE (0x0f900000,0x00000000)},
{VT_exponent,22,0x3a83d0,DOUBLEWITHTWODWORD INTREE (0x0fa00000,0x00000000)},
{VT_exponent,22,0x3a83d1,DOUBLEWITHTWODWORD INTREE(0x0fb00000 ,0x00000000)},
{VT_exponent,22,0x3a83d2,DOUBLEWI THTWODWORD INTREE (0x0fc00000,0x00000000)},
{VT_exponent,22,0x3a83d3,DOUBLEWI THTWODWORD INTREE (0x0fd00000,0x00000000)},
{VT_exponent,22,0x3a83d4,DOUBLEWI THTWODWORD INTREE (0x0fe00000,0x00000000)},
{VT_exponent,22,0x3a83d5 , DOUBLEW I THTWODWORD INTREE (0OxOF£00000,0x00000000)},
{VT_exponent,22,0x3a83d6 ,DOUBLEWI THTWODWORD INTREE (0x10000000,0x00000000)},
{VT_exponent,22,0x3a83d7,DOUBLEWITHTWODWORD INTREE (0x10100000,0x00000000)},
{VT_exponent, 22 ,0x3a83d8 , DOUBLEWI THTWODWORD INTREE (0x10200000 , 0x00000000) },
{VT_exponent,22,0x3a83d9,DOUBLEWI THTWODWORD INTREE (0x10300000,0x00000000)},
{VT_exponent,22,0x3a83da,DOUBLEWITHTWODWORD INTREE (0x10400000,0x00000000)},
{VT_exponent,22,0x3a83db,DOUBLEWITHTWODWORD INTREE (0x10500000,0x00000000)},
{VT_exponent,22,0x3a83dc,DOUBLEWITHTWODWORD INTREE (0x10600000,0x00000000)},
{VT_exponent,22,0x3a83dd,DOUBLEWITHTWODWORD INTREE (0x10700000,0x00000000)},
{VT_exponent,22,0x3a83de, DOUBLEWI THTWODWORD INTREE (0x10800000,0x00000000)},
{VT_exponent, 22 ,0x3a83df, DOUBLEW I THTWODWORD INTREE (0x10900000, 0x00000000)},
{VT_exponent,22,0x3a83e0,DOUBLEWI THTWODWORD INTREE (0x10a00000,0x00000000)},
{VT_exponent,22,0x3a83el,DOUBLEWITHTWODWORD INTREE(0x10b00000 ,0x00000000)},
{VT_exponent,22,0x3a83e2,DOUBLEWITHTWODWORD INTREE (0x10c00000,0x00000000)},
{VT_exponent,22,0x3a83e3,DOUBLEWI THTWODWORD INTREE (0x10d00000,0x00000000)},
{VT_exponent,22,0x3a83e4,DOUBLEWI THTWODWORD INTREE (0x10e00000,0x00000000)},
{VT_exponent,22,0x3a83e5,DOUBLEWI THTWODWORD INTREE (0x10¥00000,0x00000000)},
{VT_exponent,22,0x3a83e6,DOUBLEWI THTWODWORD INTREE (0x11000000,0x00000000)},
{VT_exponent,22,0x3a83e7,DOUBLEWITHTWODWORD INTREE (0x11100000,0x00000000)},
{VT_exponent,22,0x3a83e8 , DOUBLEW I THTWODWORD INTREE (0x11200000, 0x00000000)},
{VT_exponent, 22 ,0x3a83e9 , DOUBLEW I THTWODWORD INTREE (0x11300000, 0x00000000)},
{VT_exponent,22,0x3a83ea, DOUBLEWI THTWODWORD INTREE (0x11400000,0x00000000)},
{VT_exponent,22,0x3a83eb,DOUBLEWITHTWODWORD INTREE (0x11500000,0x00000000)},
{VT_exponent,22,0x3a83ec,DOUBLEWITHTWODWORD INTREE(0x11600000,0x00000000)},
{VT_exponent,22,0x3a83ed,DOUBLEWI THTWODWORD INTREE (0x11700000,0x00000000)},
{VT_exponent,22,0x3a83ee,DOUBLEWI THTWODWORD INTREE (0x11800000,0x00000000)},
{VT_exponent,22,0x3a83ef,DOUBLEWITHTWODWORD INTREE (0x11900000,0x00000000)},
{VT_exponent,22,0x3a83f0,DOUBLEWI THTWODWORD INTREE (0x11a00000,0x00000000)},
{VT_exponent,22,0x3a83f1,DOUBLEWITHTWODWORD INTREE (0x11b00000,0x00000000)},
{VT_exponent,22,0x3a83f2,DOUBLEWITHTWODWORD INTREE(0x11c00000,0x00000000)},
{VT_exponent,22,0x3a83f3, DOUBLEW I THTWODWORD INTREE (0x11d00000, 0x00000000)},
{VT_exponent, 22,,0x3a83F4 , DOUBLEWI THTWODWORD INTREE(0x11e00000 , 0x00000000)} ,
{VT_exponent,22,0x3a83f5,DOUBLEWI THTWODWORD INTREE (0x11f00000,0x00000000)},
{VT_exponent,22,0x3a83f6,DOUBLEWITHTWODWORD INTREE(0x12000000,0x00000000)},
{VT_exponent,22,0x3a83f7,DOUBLEWI THTWODWORD INTREE (0x12100000,0x00000000)},
{VT_exponent,22,0x3a83f8,DOUBLEWI THTWODWORD INTREE (0x12200000,0x00000000)},
{VT_exponent,22,0x3a83f9,DOUBLEWI THTWODWORD INTREE(0x12300000,0x00000000)},
{VT_exponent,22,0x3a83fa,DOUBLEWI THTWODWORD INTREE (0x12400000,0x00000000)},
{VT_exponent,22,0x3a83fb,DOUBLEWI THTWODWORD INTREE (0x12500000,0x00000000)},
{VT_exponent,22,0x3a83fc,DOUBLEWITHTWODWORD INTREE(0x12600000,0x00000000)},
{VT_exponent,22,0x3a83fd, DOUBLEW I THTWODWORD INTREE (012700000, 0x00000000)},
{VT_exponent, 22, 0x3a83Fe , DOUBLEWI THTWODWORD INTREE(0x12800000 , 0x00000000)} ,
{VT_exponent,22,0x3a83ff,DOUBLEWITHTWODWORD INTREE (0x12900000,0x00000000)},
{VT_exponent,22,0x3a8400,DOUBLEWITHTWODWORD INTREE(0x12a00000,0x00000000)},
{VT_exponent,22,0x3a8401,DOUBLEWITHTWODWORD INTREE (0x12b00000,0x00000000)},
{VT_exponent,22,0x3a8402,DOUBLEWITHTWODWORD INTREE (0x12c00000,0x00000000)},
{VT_exponent,22,0x3a8403,DOUBLEWITHTWODWORD INTREE (0x12d00000,0x00000000)},
{VT_exponent, 22,,0x3a8404 , DOUBLEWI THTWODWORD INTREE(0x12e00000 , 0x00000000)} ,
{VT_exponent,22,0x3a8405,DOUBLEWI THTWODWORD INTREE (0x12¥00000,0x00000000)},
{VT_exponent,22,0x3a8406 ,DOUBLEWITHTWODWORD INTREE (0x13000000,0x00000000)},
{VT_exponent,22,0x3a8407 ,DOUBLEWI THTWODWORD INTREE (0x13100000,0x00000000)},
{VT_exponent, 22,,0x3a8408 , DOUBLEWI THTWODWORD INTREE(0x13200000 , 0x00000000)} ,

264 © 1SO 2008 — All rights reserved

{VT_exponent,22,0x3a8409,DOUBLEWITHTWODWORD INTREE (0x13300000,0x00000000)},
{VT_exponent,22,0x3a840a,DOUBLEWITHTWODWORD INTREE (0x13400000,0x00000000)},
{VT_exponent,22,0x3a840b,DOUBLEWI THTWODWORD INTREE (0x13500000,0x00000000)},
{VT_exponent,22,0x3a840c ,DOUBLEWITHTWODWORD INTREE (0x13600000,0x00000000)},
{VT_exponent,22,0x3a840d,DOUBLEWITHTWODWORD INTREE (0x13700000,0x00000000)},
{VT_exponent,22,0x3a840e,DOUBLEWITHTWODWORD INTREE (0x13800000,0x00000000)},
{VT_exponent,22,0x3a840Ff,DOUBLEWITHTWODWORD INTREE (0x13900000,0x00000000)},
{VT_exponent,22,0x3a8410,DOUBLEWITHTWODWORD INTREE (0x13a00000,0x00000000)},
{VT_exponent,22,0x3a8411,DOUBLEWITHTWODWORD INTREE (0x13b00000,0x00000000)},
{VT_exponent, 22 ,0x3a8412 , DOUBLEWI THTWODWORD INTREE (0x13c00000 ,0x00000000)},
{VT_exponent,22,0x3a8413,DOUBLEWITHTWODWORD INTREE (0x13d00000,0x00000000)},
{VT_exponent,22,0x3a8414 , DOUBLEWI THTWODWORD INTREE (0x13e00000 ,0x00000000)},
{VT_exponent,22,0x3a8415,DOUBLEWITHTWODWORD INTREE (0x13f00000,0x00000000)},
{VT_exponent,22,0x3a8416,DOUBLEWITHTWODWORD INTREE (0x14000000,0x00000000)},
{VT_exponent,22,0x3a8417 ,DOUBLEWITHTWODWORD INTREE (0x14100000,0x00000000)},
{VT_exponent,22,0x3a8418 , DOUBLEWI THTWODWORD INTREE (0x14200000 ,0x00000000)},
{VT_exponent,22,0x3a8419,DOUBLEWITHTWODWORD INTREE (0x14300000,0x00000000)},
{VT_exponent,22,0x3a841a,DOUBLEWITHTWODWORD INTREE (0x14400000,0x00000000)},
{VT_exponent,22,0x3a841b,DOUBLEWITHTWODWORD INTREE (0x14500000,0x00000000)},
{VT_exponent, 22 ,0x3a841c, DOUBLEWI THTWODWORD INTREE (0x14600000 ,0x00000000)},
{VT_exponent,22,0x3a841d,DOUBLEWITHTWODWORD INTREE (0x14700000,0x00000000)},
{VT_exponent,22,0x3a841e, DOUBLEWI THTWODWORD INTREE (0x14800000 ,0x00000000)},
{VT_exponent,22,0x3a841f,DOUBLEWITHTWODWORD INTREE(0x14900000,0x00000000)},
{VT_exponent,22,0x3a8420,DOUBLEWITHTWODWORD INTREE (0x14a00000,0x00000000)},
{VT_exponent,22,0x3a8421,DOUBLEWITHTWODWORD INTREE (0x14b00000,0x00000000)},
{VT_exponent,22,0x3a8422,DOUBLEWITHTWODWORD INTREE (0x14c00000,0x00000000)},
{VT_exponent,22,0x3a8423,DOUBLEWI THTWODWORD INTREE (0x14d00000,0x00000000)},
{VT_exponent,22,0x3a8424 ,DOUBLEWITHTWODWORD INTREE (0x14e00000,0x00000000)},
{VT_exponent,22,0x3a8425,DOUBLEWITHTWODWORD INTREE (0x14f00000,0x00000000)},
{VT_exponent, 22 ,0x3a8426 , DOUBLEWI THTWODWORD INTREE (0x15000000 ,0x00000000)},
{VT_exponent,22,0x3a8427 ,DOUBLEWITHTWODWORD INTREE (0x15100000,0x00000000)},
{VT_exponent,22,0x3a8428,DOUBLEWITHTWODWORD INTREE (0x15200000,0x00000000)},
{VT_exponent,22,0x3a8429,DOUBLEWITHTWODWORD INTREE (0x15300000,0x00000000)},
{VT_exponent,22,0x3a842a,DOUBLEWI THTWODWORD INTREE (0x15400000,0x00000000)},
{VT_exponent,22,0x3a842b,DOUBLEWITHTWODWORD INTREE (0x15500000,0x00000000)},
{VT_exponent,22,0x3a842c,DOUBLEWITHTWODWORD INTREE (0x15600000,0x00000000)},
{VT_exponent,22,0x3a842d,DOUBLEWITHTWODWORD INTREE (0x15700000,0x00000000)},
{VT_exponent,22,0x3a842e,DOUBLEWI THTWODWORD INTREE (0x15800000,0x00000000)},
{VT_exponent,22,0x3a842f,DOUBLEWITHTWODWORD INTREE (0x15900000,0x00000000)},
{VT_exponent,22,0x3a8430,DOUBLEWITHTWODWORD INTREE (0x15a00000,0x00000000)},
{VT_exponent,22,0x3a8431,DOUBLEWITHTWODWORD INTREE (0x15b00000,0x00000000)},
{VT_exponent,22,0x3a8432,DOUBLEWITHTWODWORD INTREE (0x15c00000,0x00000000)},
{VT_exponent,22,0x3a8433,DOUBLEWITHTWODWORD INTREE (0x15d00000 ,0x00000000)},
{VT_exponent,22,0x3a8434 ,DOUBLEWITHTWODWORD INTREE (0x15e00000,0x00000000)},
{VT_exponent,22,0x3a8435,DOUBLEWITHTWODWORD INTREE (0x15¥00000,0x00000000)},
{VT_exponent,22,0x3a8436,DOUBLEWITHTWODWORD INTREE (0x16000000,0x00000000)},
{VT_exponent,22,0x3a8437 ,DOUBLEWITHTWODWORD INTREE (0x16100000,0x00000000)},
{VT_exponent,22,0x3a8438,DOUBLEWI THTWODWORD INTREE (0x16200000,0x00000000)},
{VT_exponent,22,0x3a8439,DOUBLEWITHTWODWORD INTREE (0x16300000,0x00000000)},
{VT_exponent, 22 ,0x3a843a, DOUBLEWI THTWODWORD INTREE (0x16400000 ,0x00000000)},
{VT_exponent,22,0x3a843b,DOUBLEWITHTWODWORD INTREE (0x16500000,0x00000000)},
{VT_exponent,22,0x3a843c,DOUBLEWITHTWODWORD INTREE (0x16600000,0x00000000)},
{VT_exponent,22,0x3a843d,DOUBLEWITHTWODWORD INTREE (0x16700000,0x00000000)},
{VT_exponent,22,0x3a843e,DOUBLEWITHTWODWORD INTREE (0x16800000,0x00000000)},
{VT_exponent,22,0x3a843F,DOUBLEWITHTWODWORD INTREE (0x16900000,0x00000000)},
{VT_exponent,22,0x3a8440,DOUBLEWITHTWODWORD INTREE (0x16a00000,0x00000000)},
{VT_exponent,22,0x3a8441,DOUBLEWITHTWODWORD INTREE (0x16b00000,0x00000000)},
{VT_exponent,22,0x3a8442,DOUBLEWITHTWODWORD INTREE (0x16c00000,0x00000000)},
{VT_exponent,22,0x3a8443,DOUBLEWI THTWODWORD INTREE (0x16d00000,0x00000000)},
{VT_exponent,22,0x3a8444 ,DOUBLEWI THTWODWORD INTREE (0x16e00000,0x00000000)},
{VT_exponent,22,0x3a8445,DOUBLEWITHTWODWORD INTREE (0x16f00000,0x00000000)},

© IS0 2008 — Al rights reserved 265

{VT_exponent,22,0x3a8446,DOUBLEWI THTWODWORD INTREE (0x17000000,0x00000000)},
{VT_exponent,22,0x3a8447 ,DOUBLEWITHTWODWORD INTREE(0x17100000,0x00000000)},
{VT_exponent,22,0x3a8448,DOUBLEWITHTWODWORD INTREE(0x17200000,0x00000000)},
{VT_exponent,22,0x3a8449,DOUBLEWITHTWODWORD INTREE (0x17300000,0x00000000)},
{VT_exponent,22,0x3a844a,DOUBLEWITHTWODWORD INTREE (0x17400000,0x00000000)},
{VT_exponent 22 ,0x3a844b , DOUBLEW I THTWODWORD INTREE (0x17500000,0x00000000)},
{VT_exponent,22,0x3a844c,DOUBLEWITHTWODWORD INTREE (0x17600000,0x00000000)},
{VT_exponent,22,0x3a844d,DOUBLEWI THTWODWORD INTREE (0x17700000,0x00000000)},
{VT_exponent,22,0x3a844e,DOUBLEWITHTWODWORD INTREE(0x17800000,0x00000000)},
{VT_exponent, 22 ,0x3a844F , DOUBLEWI THTWODWORD INTREE (0x17900000 , 0x00000000) },
{VT_exponent,22,0x3a8450,DOUBLEWI THTWODWORD INTREE (0x17a00000,0x00000000)},
{VT_exponent,22,0x3a8451,DOUBLEWITHTWODWORD INTREE(0x17b00000,0x00000000)},
{VT_exponent,22,0x3a8452,DOUBLEWI THTWODWORD INTREE (0x17c00000,0x00000000)},
{VT_exponent,22,0x3a8453,DOUBLEWI THTWODWORD INTREE (0x17d00000,0x00000000)},
{VT_exponent,22,0x3a8454 ,DOUBLEWI THTWODWORD INTREE (0x17e00000,0x00000000)},
{VT_exponent,22,0x3a8455,DOUBLEWITHTWODWORD INTREE (0x17f00000,0x00000000)},
{VT_exponent,22,0x3a8456 ,DOUBLEWI THTWODWORD INTREE (0x18000000,0x00000000)},
{VT_exponent,22,0x3a8457 ,DOUBLEWITHTWODWORD INTREE (0x18100000,0x00000000)},
{VT_exponent,22,0x3a8458,DOUBLEWITHTWODWORD INTREE(0x18200000,0x00000000)},
{VT_exponent, 22 ,0x3a8459 , DOUBLEWI THTWODWORD INTREE (0x18300000 , 0x00000000) },
{VT_exponent,22,0x3a845a,DOUBLEWI THTWODWORD INTREE (0x18400000,0x00000000)},
{VT_exponent,22,0x3a845b,DOUBLEWITHTWODWORD INTREE (0x18500000,0x00000000)},
{VT_exponent,22,0x3a845c,DOUBLEWITHTWODWORD INTREE(0x18600000,0x00000000)},
{VT_exponent,22,0x3a845d,DOUBLEWI THTWODWORD INTREE (0x18700000,0x00000000)},
{VT_exponent,22,0x3a845e,DOUBLEWI THTWODWORD INTREE (0x18800000,0x00000000)},
{VT_exponent,22,0x3a845f,DOUBLEWITHTWODWORD INTREE (0x18900000,0x00000000)},
{VT_exponent,22,0x3a8460,DOUBLEWI THTWODWORD INTREE (0x18a00000,0x00000000)},
{VT_exponent,22,0x3a8461,DOUBLEWITHTWODWORD INTREE (0x18b00000,0x00000000)},
{VT_exponent,22,0x3a8462,DOUBLEWITHTWODWORD INTREE (0x18c00000,0x00000000)},
{VT_exponent, 22 ,0x3a8463 , DOUBLEWI THTWODWORD INTREE (0x18d00000 , 0x00000000) },
{VT_exponent,22,0x3a8464 ,DOUBLEWI THTWODWORD INTREE (0x18e00000,0x00000000)},
{VT_exponent,22,0x3a8465,DOUBLEWITHTWODWORD INTREE (0x18f00000,0x00000000)},
{VT_exponent,22,0x3a8466 ,DOUBLEWITHTWODWORD INTREE(0x19000000,0x00000000)},
{VT_exponent,22,0x3a8467 ,DOUBLEWI THTWODWORD INTREE (0x19100000,0x00000000)},
{VT_exponent,22,0x3a8468,DOUBLEWITHTWODWORD INTREE (0x19200000,0x00000000)},
{VT_exponent,22,0x3a8469,DOUBLEWITHTWODWORD INTREE (0x19300000,0x00000000)},
{VT_exponent,22,0x3a846a,DOUBLEWI THTWODWORD INTREE (0x19400000,0x00000000)},
{VT_exponent,22,0x3a846b,DOUBLEWI THTWODWORD INTREE (0x19500000,0x00000000)},
{VT_exponent,22,0x3a846c,DOUBLEWITHTWODWORD INTREE(0x19600000,0x00000000)},
{VT_exponent, 22 ,0x3a846d , DOUBLEWI THTWODWORD INTREE (0x19700000 , 0x00000000) },
{VT_exponent,22,0x3a846e , DOUBLEWI THTWODWORD INTREE (0x19800000 ,0x00000000)},
{VT_exponent,22,0x3a846F,DOUBLEWITHTWODWORD INTREE (0x19900000,0x00000000)},
{VT_exponent,22,0x3a8470,DOUBLEWITHTWODWORD INTREE(0x19a00000,0x00000000)},
{VT_exponent,22,0x3a8471,DOUBLEWITHTWODWORD INTREE (0x19b00000,0x00000000)},
{VT_exponent,22,0x3a8472,DOUBLEWITHTWODWORD INTREE (0x19c00000,0x00000000)},
{VT_exponent,22,0x3a8473,DOUBLEWITHTWODWORD INTREE (0x19d00000,0x00000000)},
{VT_exponent,22,0x3a8474 ,DOUBLEWI THTWODWORD INTREE (0x19e00000,0x00000000)},
{VT_exponent,22,0x3a8475,DOUBLEWI THTWODWORD INTREE (0x19f00000,0x00000000)},
{VT_exponent,22,0x3a8476,DOUBLEWITHTWODWORD INTREE (0x1a000000,0x00000000)},
{VT_exponent, 22 ,0x3a8477 ,DOUBLEWI THTWODWORD INTREE (0x1a100000 , 0x00000000) },
{VT_exponent,22,0x3a8478,DOUBLEWI THTWODWORD INTREE(0x1a200000 ,0x00000000)},
{VT_exponent,22,0x3a8479,DOUBLEWITHTWODWORD INTREE (0x1a300000,0x00000000)},
{VT_exponent,22,0x3a847a, DOUBLEWI THTWODWORD INTREE (0x1a400000,0x00000000)},
{VT_exponent,22,0x3a847b,DOUBLEWITHTWODWORD INTREE (0x1a500000,0x00000000)},
{VT_exponent,22,0x3a847c,DOUBLEWITHTWODWORD INTREE (0x1a600000,0x00000000)},
{VT_exponent,22,0x3a847d,DOUBLEWITHTWODWORD INTREE (0x1a700000,0x00000000)},
{VT_exponent,22,0x3a847e,DOUBLEWI THTWODWORD INTREE (0x1a800000 ,0x00000000)},
{VT_exponent,22,0x3a847F,DOUBLEWITHTWODWORD INTREE (0x1a900000,0x00000000)},
{VT_exponent,22,0x3a8480,DOUBLEWITHTWODWORD INTREE (0x1aa00000,0x00000000)},
{VT_exponent,22,0x3a8481,DOUBLEWITHTWODWORD INTREE(0x1ab00000,0x00000000)},
{VT_exponent,22,0x3a8482,DOUBLEWI THTWODWORD INTREE(0x1ac00000,0x00000000)},

266 © IS0 2008 — Al rights reserved

{VT_exponent,22,0x3a8483,DOUBLEWITHTWODWORD INTREE (0x1ad00000,0x00000000)},
{VT_exponent,22,0x3a8484 ,DOUBLEWITHTWODWORD INTREE (0x1ae00000,0x00000000)},
{VT_exponent,22,0x3a8485,DOUBLEWITHTWODWORD INTREE (0x1af00000,0x00000000)},
{VT_exponent,22,0x3a8486 ,DOUBLEWITHTWODWORD INTREE (0x1b000000,0x00000000)},
{VT_exponent,22,0x3a8487 ,DOUBLEWITHTWODWORD INTREE (0x1b100000,0x00000000)},
{VT_exponent,22,0x3a8488,DOUBLEWITHTWODWORD INTREE (0x1b200000 ,0x00000000)},
{VT_exponent,22,0x3a8489,DOUBLEWITHTWODWORD INTREE (0x1b300000,0x00000000)},
{VT_exponent,22,0x3a848a,DOUBLEWITHTWODWORD INTREE (0x1b400000,0x00000000)},
{VT_exponent,22,0x3a848b,DOUBLEWI THTWODWORD INTREE (0x1b500000,0x00000000)},
{VT_exponent, 22 ,0x3a848c , DOUBLEWI THTWODWORD INTREE (0x1b600000 , 0x00000000) } ,
{VT_exponent,22,0x3a848d,DOUBLEWITHTWODWORD INTREE (0x1b700000,0x00000000)},
{VT_exponent,22,0x3a848e,DOUBLEWITHTWODWORD INTREE (0x1b800000,0x00000000)},
{VT_exponent,22,0x3a848F,DOUBLEWI THTWODWORD INTREE (0x1b900000,0x00000000)},
{VT_exponent,22,0x3a8490,DOUBLEWITHTWODWORD INTREE (0x1ba00000,0x00000000)},
{VT_exponent,22,0x3a8491,DOUBLEWITHTWODWORD INTREE (0x1bb00000,0x00000000)},
{VT_exponent,22,0x3a8492,DOUBLEWITHTWODWORD INTREE (0x1bc00000 ,0x00000000)},
{VT_exponent,22,0x3a8493,DOUBLEWITHTWODWORD INTREE (0x1bd00000,0x00000000)},
{VT_exponent,22,0x3a8494 ,DOUBLEWITHTWODWORD INTREE (0x1be00000,0x00000000)},
{VT_exponent,22,0x3a8495,DOUBLEWITHTWODWORD INTREE (0x1bf00000,0x00000000)},
{VT_exponent,22,0x3a8496 ,DOUBLEWITHTWODWORD INTREE(0x1c000000,0x00000000)},
{VT_exponent,22,0x3a8497 ,DOUBLEWITHTWODWORD INTREE (0x1c100000,0x00000000)},
{VT_exponent,22,0x3a8498 ,DOUBLEWITHTWODWORD INTREE (0x1c200000,0x00000000)},
{VT_exponent,22,0x3a8499,DOUBLEWI THTWODWORD INTREE (0x1c300000,0x00000000)},
{VT_exponent,22,0x3a849a,DOUBLEWI THTWODWORD INTREE (0x1c400000,0x00000000)},
{VT_exponent,22,0x3a849b,DOUBLEWITHTWODWORD INTREE (0x1c500000,0x00000000)},
{VT_exponent,22,0x3a849c,DOUBLEWITHTWODWORD INTREE (0x1c600000,0x00000000)},
{VT_exponent,22,0x3a849d,DOUBLEWITHTWODWORD INTREE (0x1c700000,0x00000000)},
{VT_exponent,22,0x3a849e,DOUBLEWITHTWODWORD INTREE (0x1c800000,0x00000000)},
{VT_exponent,22,0x3a849f,DOUBLEWI THTWODWORD INTREE (0x1c900000,0x00000000)},
{VT_exponent,22,0x3a84a0,DOUBLEWITHTWODWORD INTREE(0x1ca00000,0x00000000)},
{VT_exponent,22,0x3a84al,DOUBLEWITHTWODWORD INTREE (0x1cb00000,0x00000000)},
{VT_exponent,22,0x3a84a2,DOUBLEWITHTWODWORD INTREE (0x1cc00000,0x00000000)},
{VT_exponent,22,0x3a84a3,DOUBLEWITHTWODWORD INTREE (0x1cd00000 ,0x00000000)},
{VT_exponent,22,0x3a84a4 ,DOUBLEWITHTWODWORD INTREE (0x1ce00000,0x00000000)},
{VT_exponent,22,0x3a84a5,DOUBLEWITHTWODWORD INTREE (0x1cf00000,0x00000000)},
{VT_exponent,22,0x3a84a6,DOUBLEWITHTWODWORD INTREE (0x1d000000,0x00000000)},
{VT_exponent,22,0x3a84a7 ,DOUBLEWITHTWODWORD INTREE (0x1d100000,0x00000000)},
{VT_exponent,22,0x3a84a8,DOUBLEWI THTWODWORD INTREE (0x1d200000,0x00000000)},
{VT_exponent,22,0x3a84a9,DOUBLEWITHTWODWORD INTREE (0x1d300000,0x00000000)},
{VT_exponent,22,0x3a84aa,DOUBLEWITHTWODWORD INTREE (0x1d400000,0x00000000)},
{VT_exponent,22,0x3a84ab,DOUBLEWITHTWODWORD INTREE (0x1d500000,0x00000000)},
{VT_exponent,22,0x3a84ac,DOUBLEWITHTWODWORD INTREE (0x1d600000,0x00000000)},
{VT_exponent,22,0x3a84ad ,DOUBLEWITHTWODWORD INTREE (0x1d700000,0x00000000)},
{VT_exponent,22,0x3a84ae ,DOUBLEWI THTWODWORD INTREE (0x1d800000,0x00000000)},
{VT_exponent,22,0x3a84af,DOUBLEWITHTWODWORD INTREE (0x1d900000,0x00000000)},
{VT_exponent,22,0x3a84b0,DOUBLEWITHTWODWORD INTREE (0x1da00000,0x00000000)},
{VT_exponent,22,0x3a84b1,DOUBLEWITHTWODWORD INTREE (0x1db00000,0x00000000)},
{VT_exponent,22,0x3a84b2,DOUBLEWITHTWODWORD INTREE (0x1dc00000,0x00000000)},
{VT_exponent,22,0x3a84b3,DOUBLEWITHTWODWORD INTREE (0x1dd00000 ,0x00000000)},
{VT_exponent,22,0x3a84b4 ,DOUBLEWITHTWODWORD INTREE (0x1de00000 ,0x00000000)},
{VT_exponent,22,0x3a84b5,DOUBLEWITHTWODWORD INTREE (0x1df00000,0x00000000)},
{VT_exponent,22,0x3a84b6 ,DOUBLEWITHTWODWORD INTREE (0x1e000000,0x00000000)},
{VT_exponent,22,0x3a84b7 ,DOUBLEWITHTWODWORD INTREE (0x1e100000,0x00000000)},
{VT_exponent,22,0x3a84b8,DOUBLEWITHTWODWORD INTREE (0x1e200000,0x00000000)},
{VT_exponent,22,0x3a84b9,DOUBLEWITHTWODWORD INTREE (0x1e300000,0x00000000)},
{VT_exponent,22,0x3a84ba,DOUBLEWITHTWODWORD INTREE (0x1e400000,0x00000000)},
{VT_exponent,22,0x3a84bb,DOUBLEWITHTWODWORD INTREE (0x1e500000,0x00000000)},
{VT_exponent,22,0x3a84bc,DOUBLEWITHTWODWORD INTREE (0x1e600000,0x00000000)},
{VT_exponent,22,0x3a84bd ,DOUBLEWITHTWODWORD INTREE (0x1e700000,0x00000000)},
{VT_exponent,22,0x3a84be ,DOUBLEWITHTWODWORD INTREE (0x1e800000,0x00000000)},
{VT_exponent,22,0x3a84bf,DOUBLEWITHTWODWORD INTREE (0x1e900000,0x00000000)},

© IS0 2008 — All rights reserved 267

{VT_exponent,22,0x3a84c0,DOUBLEWITHTWODWORD INTREE (0x1ea00000,0x00000000)},
{VT_exponent,22,0x3a84c1,DOUBLEWITHTWODWORD INTREE(0x1eb00000,0x00000000)},
{VT_exponent,22,0x3a84c2,DOUBLEWITHTWODWORD INTREE (0x1ec00000,0x00000000)},
{VT_exponent,22,0x3a84c3,DOUBLEWITHTWODWORD INTREE (0x1ed00000,0x00000000)},
{VT_exponent,22,0x3a84c4,DOUBLEWITHTWODWORD INTREE (0x1ee00000,0x00000000)},
{VT_exponent,22,0x3a84c5,DOUBLEWITHTWODWORD INTREE (0x1ef00000,0x00000000)},
{VT_exponent,22,0x3a84c6,DOUBLEWITHTWODWORD INTREE (0x1¥000000,0x00000000)},
{VT_exponent,22,0x3a84c7,DOUBLEWITHTWODWORD INTREE (0x1¥100000,0x00000000)},
{VT_exponent,22,0x3a84c8 , DOUBLEW I THTWODWORD INTREE (0x1F200000, 0x00000000)},
{VT_exponent,22,0x3a84c9 , DOUBLEW I THTWODWORD INTREE (0x1£300000,0x00000000)},
{VT_exponent,22,0x3a84ca,DOUBLEWI THTWODWORD INTREE (0x1¥400000,0x00000000)},
{VT_exponent,22,0x3a84cb,DOUBLEWITHTWODWORD INTREE (0x1¥500000,0x00000000)},
{VT_exponent 22 ,0x3a84cc , DOUBLEW I THTWODWORD INTREE (0x1F600000,, 0x00000000)},
{VT_exponent,22,0x3a84cd,DOUBLEWITHTWODWORD INTREE (0x1¥700000,0x00000000)},
{VT_exponent,22,0x3a84ce,DOUBLEWITHTWODWORD INTREE (0x1¥800000,0x00000000)},
{VT_exponent,22,0x3a84cf,DOUBLEWITHTWODWORD INTREE (0x1¥900000,0x00000000)},
{VT_exponent,22,0x3a84d0,DOUBLEWI THTWODWORD INTREE (0x1fa00000,0x00000000)},
{VT_exponent,22,0x3a84d1,DOUBLEWITHTWODWORD INTREE (0x1¥b00000,0x00000000)},
{VT_exponent,22,0x3a84d2,DOUBLEWITHTWODWORD INTREE (0x1fc00000,0x00000000)},
{VT_exponent,22,0x3a84d3, DOUBLEW I THTWODWORD INTREE (0x1fd00000, 0x00000000)},
{VT_exponent,22,0x3a84d4 ,DOUBLEWI THTWODWORD INTREE (0x1fe00000,0x00000000)},
{VT_exponent,22,0x3a84d5,DOUBLEWITHTWODWORD INTREE (Ox1ff00000,0x00000000)},
{VT_exponent,22,0x3a84d6,DOUBLEWITHTWODWORD INTREE (0x20000000,0x00000000)},
{VT_exponent,22,0x3a84d7 ,DOUBLEWITHTWODWORD INTREE (0x20100000,0x00000000)},
{VT_exponent,22,0x3a84d8,DOUBLEWITHTWODWORD INTREE (0x20200000,0x00000000)},
{VT_exponent,22,0x3a84d9,DOUBLEWITHTWODWORD INTREE (0x20300000,0x00000000)},
{VT_exponent,22,0x3a84da,DOUBLEWI THTWODWORD INTREE (0x20400000,0x00000000)},
{VT_exponent,22,0x3a84db,DOUBLEWITHTWODWORD INTREE (0x20500000,0x00000000)},
{VT_exponent,22,0x3a84dc,DOUBLEWITHTWODWORD INTREE (0x20600000,0x00000000)},
{VT_exponent,22,0x3a84dd , DOUBLEW I THTWODWORD INTREE (0x20700000, 0x00000000)},
{VT_exponent,22,0x3a84de ,DOUBLEWI THTWODWORD INTREE (0x20800000,0x00000000)},
{VT_exponent,22,0x3a84df,DOUBLEWITHTWODWORD INTREE (0x20900000,0x00000000)},
{VT_exponent,22,0x3a84e0,DOUBLEWITHTWODWORD INTREE (0x20a00000,0x00000000)},
{VT_exponent,22,0x3a84el,DOUBLEWITHTWODWORD INTREE (0x20b00000,0x00000000)},
{VT_exponent,22,0x3a84e2,DOUBLEWI THTWODWORD INTREE (0x20c00000,0x00000000)},
{VT_exponent,22,0x3a84e3,DOUBLEWITHTWODWORD INTREE (0x20d00000,0x00000000)},
{VT_exponent,22,0x3a84e4,DOUBLEWI THTWODWORD INTREE (0x20e00000,0x00000000)},
{VT_exponent,22,0x3a84e5,DOUBLEWI THTWODWORD INTREE (0x20¥00000,0x00000000)},
{VT_exponent,22,0x3a84e6,DOUBLEWITHTWODWORD INTREE(0x21000000,0x00000000)},
{VT_exponent,22,0x3a84e7 ,DOUBLEWI THTWODWORD INTREE (021100000, 0x00000000)},
{VT_exponent, 22,,0x3a84e8 , DOUBLEWI THTWODWORD INTREE(0x21200000 , 0x00000000)} ,
{VT_exponent,22,0x3a84e9,DOUBLEWITHTWODWORD INTREE (0x21300000,0x00000000)},
{VT_exponent, 22 ,0x3a84ea, DOUBLEWI THTWODWORD I NTREE (0x21400000 , 0x00000000) } ,
{VT_exponent,22,0x3a84eb,DOUBLEWI THTWODWORD INTREE (0x21500000,0x00000000)},
{VT_exponent,22,0x3a84ec,DOUBLEWITHTWODWORD INTREE (0x21600000,0x00000000)},
{VT_exponent,22,0x3a84ed,DOUBLEWITHTWODWORD INTREE(0x21700000,0x00000000)},
{VT_exponent,22,0x3a84ee,DOUBLEWI THTWODWORD INTREE (0x21800000,0x00000000)},
{VT_exponent,22,0x3a84ef,DOUBLEWI THTWODWORD INTREE (0x21900000,0x00000000)},
{VT_exponent,22,0x3a8410,DOUBLEWITHTWODWORD INTREE (0x21a00000,0x00000000)},
{VT_exponent,22,0x3a84F1, DOUBLEWI THTWODWORD INTREE (0x21b00000, 0x00000000)},
{VT_exponent, 22,,0x3a84F2 , DOUBLEWI THTWODWORD INTREE(0x21c00000 , 0x00000000)} ,
{VT_exponent,22,0x3a84f3,DOUBLEWITHTWODWORD INTREE (0x21d00000,0x00000000)},
{VT_exponent, 22,,0x3a84F4 , DOUBLEWI THTWODWORD INTREE(0x21e00000 , 0x00000000)},
{VT_exponent,22,0x3a84f5,DOUBLEWI THTWODWORD INTREE (0x21f00000,0x00000000)},
{VT_exponent,22,0x3a84f6,DOUBLEWITHTWODWORD INTREE (0x22000000,0x00000000)},
{VT_exponent,22,0x3a84f7,DOUBLEWITHTWODWORD INTREE(0x22100000,0x00000000)},
{VT_exponent, 22,,0x3a848 , DOUBLEWI THTWODWORD INTREE(0x22200000 , 0x00000000)} ,
{VT_exponent,22,0x3a84f9,DOUBLEWITHTWODWORD INTREE (0x22300000,0x00000000)},
{VT_exponent, 22, 0x3a84Fa, DOUBLEWI THTWODWORD INTREE(0x22400000 , 0x00000000)},
{VT_exponent,22,0x3a84fb , DOUBLEW I THTWODWORD INTREE (022500000, 0x00000000)},
{VT_exponent, 22, 0x3a84Fc , DOUBLEWI THTWODWORD INTREE(0x22600000 , 0x00000000)} ,

268 © IS0 2008 — Al rights reserved

{VT_exponent,22,0x3a84fd,DOUBLEWITHTWODWORD INTREE (0x22700000,0x00000000)},
{VT_exponent,22,0x3a84fe,DOUBLEWITHTWODWORD INTREE (0x22800000 ,0x00000000)},
{VT_exponent,22,0x3a84ff,DOUBLEWI THTWODWORD INTREE (0x22900000,0x00000000)},
{VT_exponent,22,0x3a8500,DOUBLEWITHTWODWORD INTREE (0x22a00000,0x00000000)},
{VT_exponent,22,0x3a8501,DOUBLEWITHTWODWORD INTREE (0x22b00000,0x00000000)},
{VT_exponent,22,0x3a8502,DOUBLEWITHTWODWORD INTREE (0x22c00000,0x00000000)},
{VT_exponent,22,0x3a8503,DOUBLEWITHTWODWORD INTREE (0x22d00000,0x00000000)},
{VT_exponent,22,0x3a8504 ,DOUBLEWITHTWODWORD INTREE (0x22e00000,0x00000000)},
{VT_exponent, 22 ,0x3a8505 , DOUBLEWI THTWODWORD INTREE (0x22F00000 ,0x00000000) },
{VT_exponent, 22 ,0x3a8506 , DOUBLEW I THTWODWORD INTREE (023000000, 0x00000000)},
{VT_exponent,22,0x3a8507 ,DOUBLEWITHTWODWORD INTREE (0x23100000,0x00000000)},
{VT_exponent,22,0x3a8508 ,DOUBLEWITHTWODWORD INTREE (0x23200000 ,0x00000000) },
{VT_exponent, 22 ,0x3a8509 , DOUBLEWI THTWODWORD INTREE (0x23300000 ,0x00000000)},
{VT_exponent,22,0x3a850a,DOUBLEWITHTWODWORD INTREE (0x23400000,0x00000000)},
{VT_exponent,22,0x3a850b,DOUBLEWITHTWODWORD INTREE (0x23500000,0x00000000)},
{VT_exponent,22,0x3a850c , DOUBLEWITHTWODWORD INTREE (0x23600000 ,0x00000000) },
{VT_exponent,22,0x3a850d ,DOUBLEWITHTWODWORD INTREE (0x23700000,0x00000000)},
{VT_exponent,22,0x3a850e ,DOUBLEWITHTWODWORD INTREE (0x23800000,0x00000000)},
{VT_exponent,22,0x3a850F, DOUBLEWI THTWODWORD INTREE (0x23900000,0x00000000) },
{VT_exponent,22,0x3a8510,DOUBLEWITHTWODWORD INTREE (0x23a00000,0x00000000)},
{VT_exponent,22,0x3a8511,DOUBLEWITHTWODWORD INTREE (0x23b00000,0x00000000)},
{VT_exponent,22,0x3a8512,DOUBLEWITHTWODWORD INTREE (0x23c00000,0x00000000)},
{VT_exponent,22,0x3a8513,DOUBLEWI THTWODWORD INTREE (0x23d00000,0x00000000)},
{VT_exponent,22,0x3a8514 ,DOUBLEWITHTWODWORD INTREE (0x23e00000,0x00000000)},
{VT_exponent,22,0x3a8515,DOUBLEWI THTWODWORD INTREE (0x23¥00000,0x00000000)},
{VT_exponent,22,0x3a8516,DOUBLEWITHTWODWORD INTREE (0x24000000,0x00000000)},
{VT_exponent,22,0x3a8517 ,DOUBLEWITHTWODWORD INTREE (0x24100000,0x00000000)},
{VT_exponent,22,0x3a8518,DOUBLEWITHTWODWORD INTREE (0x24200000,0x00000000)},
{VT_exponent,22,0x3a8519, DOUBLEWI THTWODWORD INTREE (0x24300000 ,0x00000000)},
{VT_exponent, 22 ,0x3a851a, DOUBLEW I THTWODWORD INTREE (0x24400000 ,0x00000000)},
{VT_exponent,22,0x3a851b,DOUBLEWITHTWODWORD INTREE (0x24500000,0x00000000)},
{VT_exponent,22,0x3a851c,DOUBLEWITHTWODWORD INTREE (0x24600000,0x00000000)},
{VT_exponent,22,0x3a851d,DOUBLEWITHTWODWORD INTREE (0x24700000 ,0x00000000)},
{VT_exponent,22,0x3a851e,DOUBLEWITHTWODWORD INTREE (0x24800000,0x00000000)},
{VT_exponent,22,0x3a851f,DOUBLEWITHTWODWORD INTREE (0x24900000,0x00000000)},
{VT_exponent,22,0x3a8520,DOUBLEWITHTWODWORD INTREE (0x24a00000,0x00000000)},
{VT_exponent,22,0x3a8521,DOUBLEWITHTWODWORD INTREE (0x24b00000,0x00000000)},
{VT_exponent,22,0x3a8522,DOUBLEWI THTWODWORD INTREE (0x24c00000,0x00000000)},
{VT_exponent,22,0x3a8523,DOUBLEWITHTWODWORD INTREE (0x24d00000 ,0x00000000)},
{VT_exponent,22,0x3a8524 ,DOUBLEWITHTWODWORD INTREE (0x24e00000,0x00000000)},
{VT_exponent, 22,0x3a8525 , DOUBLEWI THTWODWORD I NTREE (0x24F00000 , 0x00000000) },
{VT_exponent,22,0x3a8526 ,DOUBLEWITHTWODWORD INTREE (0x25000000,0x00000000)},
{VT_exponent,22,0x3a8527 ,DOUBLEWITHTWODWORD INTREE (0x25100000 ,0x00000000)},
{VT_exponent,22,0x3a8528,DOUBLEWI THTWODWORD INTREE (0x25200000,0x00000000)},
{VT_exponent,22,0x3a8529,DOUBLEWITHTWODWORD INTREE (0x25300000,0x00000000)},
{VT_exponent,22,0x3a852a,DOUBLEWITHTWODWORD INTREE (0x25400000,0x00000000)},
{VT_exponent,22,0x3a852b,DOUBLEWITHTWODWORD INTREE (0x25500000,0x00000000)},
{VT_exponent,22,0x3a852c ,DOUBLEWI THTWODWORD INTREE (0x25600000,0x00000000)},
{VT_exponent,22,0x3a852d ,DOUBLEWITHTWODWORD INTREE (0x25700000 ,0x00000000) },
{VT_exponent, 22 ,0x3a852e , DOUBLEW I THTWODWORD INTREE (025800000, 0x00000000)},
{VT_exponent, 22,0x3a852F , DOUBLEWI THTWODWORD I NTREE (0x25900000 , 0x00000000) },
{VT_exponent,22,0x3a8530,DOUBLEWITHTWODWORD INTREE (0x25a00000,0x00000000)},
{VT_exponent,22,0x3a8531,DOUBLEWITHTWODWORD INTREE (0x25b00000 ,0x00000000)},
{VT_exponent,22,0x3a8532,DOUBLEWITHTWODWORD INTREE (0x25c00000,0x00000000)},
{VT_exponent,22,0x3a8533,DOUBLEWITHTWODWORD INTREE (0x25d00000,0x00000000)},
{VT_exponent,22,0x3a8534 ,DOUBLEWITHTWODWORD INTREE (0x25e00000,0x00000000)},
{VT_exponent, 22,0x3a8535 , DOUBLEWI THTWODWORD I NTREE (0x25F00000 , 0X00000000) },
{VT_exponent,22,0x3a8536 ,DOUBLEWITHTWODWORD INTREE (0x26000000,0x00000000)},
{VT_exponent,22,0x3a8537 ,DOUBLEWITHTWODWORD INTREE (0x26100000 ,0x00000000)},
{VT_exponent, 22 ,0x3a8538 , DOUBLEWI THTWODWORD INTREE (0x26200000 ,0x00000000)},
{VT_exponent, 22,0x3a8539 , DOUBLEWI THTWODWORD I NTREE (0x26300000 , 0x00000000) },

© IS0 2008 — Al rights reserved 269

{VT_exponent,22,0x3a853a,DOUBLEWI THTWODWORD INTREE (0x26400000,0x00000000)},
{VT_exponent,22,0x3a853b,DOUBLEWITHTWODWORD INTREE (0x26500000,0x00000000)},
{VT_exponent,22,0x3a853c,DOUBLEWITHTWODWORD INTREE (0x26600000,0x00000000)},
{VT_exponent,22,0x3a853d,DOUBLEWI THTWODWORD INTREE (0x26700000,0x00000000)},
{VT_exponent,22,0x3a853e,DOUBLEWI THTWODWORD INTREE (0x26800000,0x00000000)},
{VT_exponent,22,0x3a853f,DOUBLEWITHTWODWORD INTREE (0x26900000,0x00000000)},
{VT_exponent,22,0x3a8540,DOUBLEWI THTWODWORD INTREE (0x26a00000,0x00000000)},
{VT_exponent,22,0x3a8541,DOUBLEWITHTWODWORD INTREE (0x26b00000,0x00000000)},
{VT_exponent,22,0x3a8542,DOUBLEWI THTWODWORD INTREE (0x26c00000,0x00000000)},
{VT_exponent, 22 ,0x3a8543 , DOUBLEW I THTWODWORD INTREE (0x26d00000, 0x00000000)},
{VT_exponent,22,0x3a8544 ,DOUBLEWI THTWODWORD INTREE (0x26e00000,0x00000000)},
{VT_exponent,22,0x3a8545,DOUBLEWI THTWODWORD INTREE (0x26€00000,0x00000000)},
{VT_exponent 22 ,0x3a8546 , DOUBLEW I THTWODWORD INTREE (027000000, 0x00000000)},
{VT_exponent,22,0x3a8547 ,DOUBLEWI THTWODWORD INTREE (0x27100000,0x00000000)},
{VT_exponent,22,0x3a8548,DOUBLEWITHTWODWORD INTREE (0x27200000,0x00000000)},
{VT_exponent,22,0x3a8549,DOUBLEWITHTWODWORD INTREE (0x27300000,0x00000000)},
{VT_exponent,22,0x3a854a,DOUBLEWI THTWODWORD INTREE (0x27400000,0x00000000)},
{VT_exponent,22,0x3a854b,DOUBLEWI THTWODWORD INTREE (0x27500000,0x00000000)},
{VT_exponent,22,0x3a854c , DOUBLEW I THTWODWORD INTREE (027600000, 0x00000000)},
{VT_exponent,22,0x3a854d , DOUBLEW I THTWODWORD INTREE (027700000, 0x00000000)},
{VT_exponent,22,0x3a854e,DOUBLEWI THTWODWORD INTREE (0x27800000,0x00000000)},
{VT_exponent,22,0x3a854f,DOUBLEWITHTWODWORD INTREE(0x27900000,0x00000000)},
{VT_exponent,22,0x3a8550 , DOUBLEW I THTWODWORD INTREE (027200000, 0x00000000)},
{VT_exponent,22,0x3a8551,DOUBLEWITHTWODWORD INTREE (0x27b00000,0x00000000)},
{VT_exponent,22,0x3a8552,DOUBLEWITHTWODWORD INTREE (0x27c00000,0x00000000)},
{VT_exponent,22,0x3a8553,DOUBLEWI THTWODWORD INTREE (0x27d00000,0x00000000)},
{VT_exponent,22,0x3a8554 ,DOUBLEWI THTWODWORD INTREE (0x27e00000,0x00000000)},
{VT_exponent,22,0x3a8555,DOUBLEWI THTWODWORD INTREE (0x27¥00000,0x00000000)},
{VT_exponent, 22 ,0x3a8556 , DOUBLEWI THTWODWORD INTREE (0x28000000 , 0x00000000) },
{VT_exponent,22,0x3a8557 ,DOUBLEW I THTWODWORD INTREE (028100000, 0x00000000)},
{VT_exponent,22,0x3a8558,DOUBLEWI THTWODWORD INTREE (0x28200000,0x00000000)},
{VT_exponent,22,0x3a8559,DOUBLEWITHTWODWORD INTREE (0x28300000,0x00000000)},
{VT_exponent,22,0x3a855a,DOUBLEWITHTWODWORD INTREE (0x28400000,0x00000000)},
{VT_exponent,22,0x3a855b,DOUBLEWI THTWODWORD INTREE (0x28500000,0x00000000)},
{VT_exponent,22,0x3a855c,DOUBLEWITHTWODWORD INTREE (0x28600000,0x00000000)},
{VT_exponent,22,0x3a855d,DOUBLEWITHTWODWORD INTREE (0x28700000,0x00000000)},
{VT_exponent,22,0x3a855e ,DOUBLEWI THTWODWORD INTREE (0x28800000,0x00000000)},
{VT_exponent,22,0x3a855F,DOUBLEWI THTWODWORD INTREE (0x28900000,0x00000000)},
{VT_exponent,22,0x3a8560,DOUBLEWITHTWODWORD INTREE (0x28a00000,0x00000000)},
{VT_exponent,22,0x3a8561 , DOUBLEW I THTWODWORD INTREE (0x28b00000 , 0x00000000)},
{VT_exponent, 22,,0x3a8562 , DOUBLEWI THTWODWORD INTREE(0x28c00000 , 0x00000000)} ,
{VT_exponent,22,0x3a8563,DOUBLEWITHTWODWORD INTREE (0x28d00000,0x00000000)},
{VT_exponent,22,0x3a8564 ,DOUBLEWITHTWODWORD INTREE (0x28e00000,0x00000000)},
{VT_exponent,22,0x3a8565,DOUBLEWI THTWODWORD INTREE (0x28¥00000,0x00000000)},
{VT_exponent,22,0x3a8566 ,DOUBLEWITHTWODWORD INTREE (0x29000000,0x00000000)},
{VT_exponent,22,0x3a8567 ,DOUBLEWITHTWODWORD INTREE (0x29100000,0x00000000)},
{VT_exponent,22,0x3a8568,DOUBLEWITHTWODWORD INTREE (0x29200000,0x00000000)},
{VT_exponent,22,0x3a8569,DOUBLEWITHTWODWORD INTREE (0x29300000,0x00000000)},
{VT_exponent,22,0x3a856a,DOUBLEWITHTWODWORD INTREE (0x29400000,0x00000000)},
{VT_exponent, 22 ,0x3a856b , DOUBLEW I THTWODWORD INTREE (0x29500000,0x00000000)},
{VT_exponent, 22,,0x3a856¢ , DOUBLEWI THTWODWORD INTREE(0x29600000 , 0x00000000)} ,
{VT_exponent,22,0x3a856d,DOUBLEWITHTWODWORD INTREE (0x29700000,0x00000000)},
{VT_exponent,22,0x3a856e,DOUBLEWITHTWODWORD INTREE (0x29800000,0x00000000)},
{VT_exponent,22,0x3a856F,DOUBLEWI THTWODWORD INTREE (0x29900000,0x00000000)},
{VT_exponent,22,0x3a8570,DOUBLEWI THTWODWORD INTREE (0x29a00000,0x00000000)},
{VT_exponent,22,0x3a8571,DOUBLEWITHTWODWORD INTREE (0x29b00000,0x00000000)},
{VT_exponent, 22,0x3a8572 , DOUBLEWI THTWODWORD INTREE(0x29c00000 , 0x00000000)} ,
{VT_exponent,22,0x3a8573,DOUBLEWI THTWODWORD INTREE (0x29d00000,0x00000000)},
{VT_exponent,22,0x3a8574 ,DOUBLEWITHTWODWORD INTREE (0x29e00000,0x00000000)},
{VT_exponent,22,0x3a8575,DOUBLEWI THTWODWORD INTREE (0x29f00000,0x00000000)},
{VT_exponent, 22,,0x3a8576 , DOUBLEWI THTWODWORD INTREE(0x2a000000 , 0x00000000)} ,

270 © 1SO 2008 — All rights reserved

{VT_exponent,22,0x3a8577 ,DOUBLEWITHTWODWORD INTREE (0x2a100000,0x00000000)},
{VT_exponent,22,0x3a8578,DOUBLEWITHTWODWORD INTREE (0x2a200000 ,0x00000000)},
{VT_exponent,22,0x3a8579,DOUBLEWI THTWODWORD INTREE (0x2a300000,0x00000000) },
{VT_exponent,22,0x3a857a,DOUBLEWITHTWODWORD INTREE (0x2a400000,0x00000000)},
{VT_exponent,22,0x3a857b,DOUBLEWITHTWODWORD INTREE (0x2a500000,0x00000000)},
{VT_exponent,22,0x3a857c,DOUBLEWITHTWODWORD INTREE (0x2a600000,0x00000000) } ,
{VT_exponent,22,0x3a857d,DOUBLEWI THTWODWORD INTREE (0x2a700000,0x00000000)},
{VT_exponent,22,0x3a857e,DOUBLEWI THTWODWORD INTREE (0x2a800000,0x00000000)},
{VT_exponent,22,0x3a857F,DOUBLEWI THTWODWORD INTREE (0x2a900000,0x00000000) },
{VT_exponent,22,0x3a8580,DOUBLEWITHTWODWORD INTREE (0x2aa00000 ,0x00000000)},
{VT_exponent,22,0x3a8581,DOUBLEWITHTWODWORD INTREE (0x2ab00000,0x00000000)},
{VT_exponent,22,0x3a8582,DOUBLEWI THTWODWORD INTREE (0x2ac00000,0x00000000)},
{VT_exponent,22,0x3a8583,DOUBLEWI THTWODWORD INTREE (0x2ad00000,0x00000000) },
{VT_exponent,22,0x3a8584 ,DOUBLEWITHTWODWORD INTREE (0x2ae00000,0x00000000)},
{VT_exponent,22,0x3a8585,DOUBLEWITHTWODWORD INTREE (0x2af00000,0x00000000)},
{VT_exponent,22,0x3a8586 ,DOUBLEWI THTWODWORD INTREE (0x2b000000,,0x00000000) } ,
{VT_exponent,22,0x3a8587 ,DOUBLEWITHTWODWORD INTREE (0x2b100000,0x00000000)},
{VT_exponent,22,0x3a8588,DOUBLEWITHTWODWORD INTREE (0x2b200000,0x00000000)},
{VT_exponent,22,0x3a8589 , DOUBLEWI THTWODWORD INTREE (0x2b300000 ,0x00000000)} ,
{VT_exponent,22,0x3a858a,DOUBLEWITHTWODWORD INTREE (0x2b400000,0x00000000)},
{VT_exponent,22,0x3a858b,DOUBLEWITHTWODWORD INTREE (0x2b500000,0x00000000)},
{VT_exponent,22,0x3a858c, DOUBLEWITHTWODWORD INTREE (0x2b600000,,0x00000000)},
{VT_exponent,22,0x3a858d , DOUBLEWI THTWODWORD INTREE (0x2b700000 ,0x00000000)} ,
{VT_exponent,22,0x3a858e ,DOUBLEWITHTWODWORD INTREE (0x2b800000,0x00000000)},
{VT_exponent,22,0x3a858F,DOUBLEWITHTWODWORD INTREE (0x2b900000,0x00000000)},
{VT_exponent,22,0x3a8590,DOUBLEWITHTWODWORD INTREE (0x2ba00000,0x00000000)},
{VT_exponent,22,0x3a8591 ,DOUBLEWITHTWODWORD INTREE (0x2bb00000,0x00000000)},
{VT_exponent,22,0x3a8592,DOUBLEWITHTWODWORD INTREE (0x2bc00000,0x00000000)},
{VT_exponent,22,0x3a8593, DOUBLEWI THTWODWORD INTREE (0x2bd00000 ,0x00000000) } ,
{VT_exponent,22,0x3a8594 ,DOUBLEWITHTWODWORD INTREE (0x2be00000 ,0x00000000) },
{VT_exponent,22,0x3a8595,DOUBLEWITHTWODWORD INTREE (0x2b¥00000,0x00000000)},
{VT_exponent,22,0x3a8596 ,DOUBLEWI THTWODWORD INTREE (0x2c000000,0x00000000) },
{VT_exponent,22,0x3a8597 ,DOUBLEWITHTWODWORD INTREE (0x2c100000,0x00000000)},
{VT_exponent,22,0x3a8598 ,DOUBLEWITHTWODWORD INTREE (0x2c200000,0x00000000)},
{VT_exponent,22,0x3a8599,DOUBLEWITHTWODWORD INTREE (0x2c300000,0x00000000)},
{VT_exponent,22,0x3a859a,DOUBLEWITHTWODWORD INTREE (0x2c400000,0x00000000)},
{VT_exponent,22,0x3a859b ,DOUBLEWITHTWODWORD INTREE (0x2c500000,0x00000000)},
{VT_exponent,22,0x3a859c ,DOUBLEWITHTWODWORD INTREE (0x2c600000,0x00000000)},
{VT_exponent,22,0x3a859d ,DOUBLEWITHTWODWORD INTREE (0x2c700000 ,0x00000000)},
{VT_exponent,22,0x3a859e ,DOUBLEWITHTWODWORD INTREE (0x2c800000 ,0x00000000)},
{VT_exponent,22,0x3a859f, DOUBLEWI THTWODWORD INTREE (0x2c900000 ,0x00000000) },
{VT_exponent,22,0x3a85a0,DOUBLEWITHTWODWORD INTREE (0x2ca00000,0x00000000)},
{VT_exponent,22,0x3a85al,DOUBLEWITHTWODWORD INTREE (0x2cb00000 ,0x00000000)},
{VT_exponent,22,0x3a85a2,DOUBLEWITHTWODWORD INTREE (0x2cc00000,0x00000000)},
{VT_exponent,22,0x3a85a3,DOUBLEWITHTWODWORD INTREE (0x2cd00000,0x00000000)},
{VT_exponent,22,0x3a85a4 ,DOUBLEWITHTWODWORD INTREE (0x2ce00000,0x00000000)},
{VT_exponent,22,0x3a85a5,DOUBLEWI THTWODWORD INTREE (0x2cf00000,0x00000000)},
{VT_exponent,22,0x3a85a6 ,DOUBLEWITHTWODWORD INTREE (0x2d000000,0x00000000)},
{VT_exponent,22,0x3a85a7 ,DOUBLEWITHTWODWORD INTREE (0x2d100000 ,0x00000000)},
{VT_exponent,22,0x3a85a8,DOUBLEWITHTWODWORD INTREE (0x2d200000,0x00000000)},
{VT_exponent,22,0x3a85a9, DOUBLEWI THTWODWORD INTREE (0x2d300000 ,0x00000000)},
{VT_exponent,22,0x3a85aa, DOUBLEWITHTWODWORD INTREE (0x2d400000,0x00000000)},
{VT_exponent,22,0x3a85ab ,DOUBLEWITHTWODWORD INTREE (0x2d500000 ,0x00000000)},
{VT_exponent,22,0x3a85ac , DOUBLEWI THTWODWORD INTREE (0x2d600000,0x00000000)},
{VT_exponent,22,0x3a85ad,DOUBLEWITHTWODWORD INTREE (0x2d700000,0x00000000)},
{VT_exponent,22,0x3a85ae ,DOUBLEWITHTWODWORD INTREE (0x2d800000,0x00000000)},
{VT_exponent,22,0x3a85af, DOUBLEWITHTWODWORD INTREE(0x2d900000 ,0x00000000)},
{VT_exponent,22,0x3a85b0,DOUBLEWITHTWODWORD INTREE (0x2da00000,0x00000000)},
{VT_exponent,22,0x3a85b1,DOUBLEWITHTWODWORD INTREE (0x2db00000 ,0x00000000)},
{VT_exponent,22,0x3a85b2,DOUBLEWITHTWODWORD INTREE (0x2dc00000 ,0x00000000)},
{VT_exponent,22,0x3a85b3, DOUBLEWI THTWODWORD INTREE (0x2dd00000 ,0x00000000)},

© IS0 2008 — All rights reserved 271

{VT_exponent,22,0x3a85b4 ,DOUBLEWI THTWODWORD INTREE (0x2de00000,0x00000000)},
{VT_exponent,22,0x3a85b5,DOUBLEWITHTWODWORD INTREE (0x2df00000,0x00000000)},
{VT_exponent,22,0x3a85b6,DOUBLEWI THTWODWORD INTREE (0x2e000000,0x00000000)},
{VT_exponent,22,0x3a85b7,DOUBLEWI THTWODWORD INTREE (0x2e100000,0x00000000)},
{VT_exponent,22,0x3a85b8,DOUBLEWITHTWODWORD INTREE (0x2e200000,0x00000000)},
{VT_exponent,22,0x3a85b9,DOUBLEWITHTWODWORD INTREE (0x2e300000,0x00000000)},
{VT_exponent,22,0x3a85ba,DOUBLEWI THTWODWORD INTREE (0x2e400000,0x00000000)},
{VT_exponent,22,0x3a85bb,DOUBLEWI THTWODWORD INTREE (0x2e500000,0x00000000)},
{VT_exponent,22,0x3a85bc,DOUBLEWI THTWODWORD INTREE (0x2e600000,0x00000000) },
{VT_exponent, 22 ,0x3a85bd , DOUBLEW I THTWODWORD INTREE (02700000, 0x00000000)},
{VT_exponent,22,0x3a85be ,DOUBLEWI THTWODWORD INTREE (0x2e800000,0x00000000)},
{VT_exponent,22,0x3a85bf,DOUBLEWITHTWODWORD INTREE (0x2€900000,0x00000000)},
{VT_exponent,22,0x3a85c0, DOUBLEWITHTWODWORD INTREE (0x2ea00000,0x00000000)},
{VT_exponent,22,0x3a85c1,DOUBLEWITHTWODWORD INTREE (0x2eb00000,0x00000000)},
{VT_exponent,22,0x3a85c2,DOUBLEWITHTWODWORD INTREE (0x2ec00000,0x00000000)},
{VT_exponent,22,0x3a85c3,DOUBLEWITHTWODWORD INTREE (0x2ed00000 ,0x00000000)},
{VT_exponent,22,0x3a85c4,DOUBLEWI THTWODWORD INTREE (0x2ee00000,0x00000000)},
{VT_exponent,22,0x3a85c5,DOUBLEWI THTWODWORD INTREE (0x2ef00000,0x00000000)},
{VT_exponent, 22 ,0x3a85c6 , DOUBLEWI THTWODWORD INTREE (0x2£000000 , 0x00000000) },
{VT_exponent,22,0x3a85c7 ,DOUBLEW I THTWODWORD INTREE (02100000, 0x00000000)},
{VT_exponent,22,0x3a85c8,DOUBLEWI THTWODWORD INTREE (0x2¥200000,0x00000000)},
{VT_exponent,22,0x3a85c9,DOUBLEWITHTWODWORD INTREE (0x2¥300000,0x00000000)},
{VT_exponent, 22 ,0x3a85ca, DOUBLEWI THTWODWORD INTREE (0x2£400000 , 0x00000000) },
{VT_exponent,22,0x3a85cb,DOUBLEWITHTWODWORD INTREE (0x2¥500000,0x00000000)},
{VT_exponent,22,0x3a85cc,DOUBLEWI THTWODWORD INTREE (0x2¥600000,0x00000000)},
{VT_exponent,22,0x3a85cd,DOUBLEWITHTWODWORD INTREE (0x2¥700000,0x00000000)},
{VT_exponent,22,0x3a85ce ,DOUBLEWI THTWODWORD INTREE (0x2¥800000,0x00000000)},
{VT_exponent,22,0x3a85cf,DOUBLEWITHTWODWORD INTREE (0x2¥900000,0x00000000)},
{VT_exponent, 22 ,0x3a85d0 , DOUBLEWI THTWODWORD INTREE (0x2£a00000 , 0x00000000) },
{VT_exponent,22,0x3a85d1 , DOUBLEW I THTWODWORD INTREE (0x2Fb00000 , 0x00000000)},
{VT_exponent,22,0x3a85d2,DOUBLEWI THTWODWORD INTREE (0x2¥c00000,0x00000000)},
{VT_exponent,22,0x3a85d3,DOUBLEWITHTWODWORD INTREE (0x2¥d00000 ,0x00000000)},
{VT_exponent,22,0x3a85d4 ,DOUBLEWITHTWODWORD INTREE (0x2fe00000,0x00000000)},
{VT_exponent,22,0x3a85d5,DOUBLEWI THTWODWORD INTREE (0x2ff00000,0x00000000)},
{VT_exponent,22,0x3a85d6 ,DOUBLEWITHTWODWORD INTREE (0x30000000,0x00000000)},
{VT_exponent,22,0x3a85d7 ,DOUBLEWITHTWODWORD INTREE (0x30100000,0x00000000)},
{VT_exponent,22,0x3a85d8,DOUBLEWI THTWODWORD INTREE (0x30200000,0x00000000)},
{VT_exponent,22,0x3a85d9,DOUBLEWITHTWODWORD INTREE (0x30300000,0x00000000)},
{VT_exponent,22,0x3a85da,DOUBLEWITHTWODWORD INTREE (0x30400000,0x00000000)},
{VT_exponent, 22 ,0x3a85db , DOUBLEW I THTWODWORD INTREE (0x30500000, 0x00000000)},
{VT_exponent, 22,0x3a85dc , DOUBLEWI THTWODWORD I NTREE (0x30600000 , 0x00000000) } ,
{VT_exponent,22,0x3a85dd, DOUBLEWITHTWODWORD INTREE (0x30700000,0x00000000)},
{VT_exponent,22,0x3a85de ,DOUBLEWITHTWODWORD INTREE (0x30800000,0x00000000)},
{VT_exponent,22,0x3a85df,DOUBLEWITHTWODWORD INTREE (0x30900000,0x00000000)},
{VT_exponent,22,0x3a85e0,DOUBLEWI THTWODWORD INTREE (0x30a00000,0x00000000)},
{VT_exponent,22,0x3a85el,DOUBLEWITHTWODWORD INTREE (0x30b00000,0x00000000)},
{VT_exponent,22,0x3a85e2,DOUBLEWI THTWODWORD INTREE (0x30c00000,0x00000000)},
{VT_exponent,22,0x3a85e3,DOUBLEWI THTWODWORD INTREE (0x30d00000,0x00000000)},
{VT_exponent,22,0x3a85e4 ,DOUBLEWITHTWODWORD INTREE (0x30e00000,0x00000000)},
{VT_exponent,22,0x3a85e5,DOUBLEWITHTWODWORD INTREE (0x30f00000,0x00000000)},
{VT_exponent, 22,0x3a85e6 , DOUBLEWI THTWODWORD I NTREE (0x31000000 , 0x00000000) } ,
{VT_exponent,22,0x3a85e7 ,DOUBLEWITHTWODWORD INTREE (0x31100000,0x00000000)},
{VT_exponent,22,0x3a85e8,DOUBLEWITHTWODWORD INTREE (0x31200000,0x00000000)},
{VT_exponent,22,0x3a85e9,DOUBLEWITHTWODWORD INTREE (0x31300000,0x00000000)},
{VT_exponent,22,0x3a85ea, DOUBLEWI THTWODWORD INTREE (0x31400000,0x00000000)},
{VT_exponent,22,0x3a85eb,DOUBLEWITHTWODWORD INTREE (0x31500000,0x00000000)},
{VT_exponent, 22 ,0x3a85ec , DOUBLEWI THTWODWORD I NTREE (0x31600000 , 0x00000000) } ,
{VT_exponent,22,0x3a85ed, DOUBLEWI THTWODWORD INTREE (0x31700000,0x00000000)},
{VT_exponent,22,0x3a85ee,DOUBLEWITHTWODWORD INTREE (0x31800000,0x00000000)},
{VT_exponent, 22 ,0x3a85ef , DOUBLEWI THTWODWORD INTREE (0x31900000 , 0x00000000) },
{VT_exponent, 22 ,0x3a85f0, DOUBLEWI THTWODWORD I NTREE (0x31a00000 , 0x00000000) } ,

272 © 1SO 2008 — All rights reserved

{VT_exponent,22,0x3a85f1,DOUBLEWITHTWODWORD INTREE (0x31b00000,0x00000000)},
{VT_exponent,22,0x3a85f2,DOUBLEWI THTWODWORD INTREE (0x31c00000,0x00000000)},
{VT_exponent,22,0x3a85F3, DOUBLEWI THTWODWORD INTREE (0x31d00000 ,0x00000000)} ,
{VT_exponent,22,0x3a85f4 ,DOUBLEWITHTWODWORD INTREE (0x31e00000,0x00000000)},
{VT_exponent,22,0x3a85f5,DOUBLEWI THTWODWORD INTREE (0x31f00000,0x00000000)},
{VT_exponent,22,0x3a85f6,DOUBLEWI THTWODWORD INTREE (0x32000000,0x00000000)} ,
{VT_exponent,22,0x3a85f7 ,DOUBLEWITHTWODWORD INTREE (0x32100000,0x00000000)},
{VT_exponent,22,0x3a85f8,DOUBLEWI THTWODWORD INTREE (0x32200000,0x00000000)},
{VT_exponent,22,0x3a85F9, DOUBLEWI THTWODWORD INTREE (0x32300000 ,0x00000000)} ,
{VT_exponent, 22 ,0x3a85Fa, DOUBLEWI THTWODWORD INTREE (0x32400000 ,0x00000000)} ,
{VT_exponent,22,0x3a85fb,DOUBLEWITHTWODWORD INTREE (0x32500000,0x00000000)},
{VT_exponent,22,0x3a85fc,DOUBLEWITHTWODWORD INTREE (0x32600000,0x00000000)},
{VT_exponent,22,0x3a85Fd , DOUBLEWI THTWODWORD INTREE (0x32700000 ,0x00000000)} ,
{VT_exponent,22,0x3a85fe,DOUBLEWITHTWODWORD INTREE (0x32800000,0x00000000)},
{VT_exponent,22,0x3a85ff,DOUBLEWI THTWODWORD INTREE (0x32900000,0x00000000)},
{VT_exponent,22,0x3a8600,DOUBLEWITHTWODWORD INTREE (0x32a00000,0x00000000)},
{VT_exponent,22,0x3a8601,DOUBLEWITHTWODWORD INTREE (0x32b00000,0x00000000)},
{VT_exponent,22,0x3a8602,DOUBLEWITHTWODWORD INTREE (0x32c00000,0x00000000)},
{VT_exponent,22,0x3a8603, DOUBLEWI THTWODWORD INTREE (0x32d00000 ,0x00000000) } ,
{VT_exponent,22,0x3a8604 ,DOUBLEWITHTWODWORD INTREE (0x32e00000,0x00000000)},
{VT_exponent,22,0x3a8605,DOUBLEWITHTWODWORD INTREE (0x32¥00000,0x00000000)},
{VT_exponent,22,0x3a8606 , DOUBLEWITHTWODWORD INTREE (0x33000000 ,0x00000000)},
{VT_exponent,22,0x3a8607 ,DOUBLEWI THTWODWORD INTREE (0x33100000,0x00000000)},
{VT_exponent,22,0x3a8608,DOUBLEWITHTWODWORD INTREE (0x33200000,0x00000000)},
{VT_exponent,22,0x3a8609,DOUBLEWITHTWODWORD INTREE (0x33300000,0x00000000)},
{VT_exponent,22,0x3a860a,DOUBLEWITHTWODWORD INTREE (0x33400000,0x00000000)},
{VT_exponent,22,0x3a860b,DOUBLEWITHTWODWORD INTREE (0x33500000,0x00000000)},
{VT_exponent,22,0x3a860c ,DOUBLEWITHTWODWORD INTREE (0x33600000,0x00000000)},
{VT_exponent,22,0x3a860d, DOUBLEWI THTWODWORD INTREE (0x33700000,0x00000000)},
{VT_exponent,22,0x3a860e ,DOUBLEWITHTWODWORD INTREE (0x33800000,0x00000000)},
{VT_exponent,22,0x3a860Ff,DOUBLEWITHTWODWORD INTREE (0x33900000,0x00000000)},
{VT_exponent,22,0x3a8610,DOUBLEWITHTWODWORD INTREE (0x33a00000,0x00000000)},
{VT_exponent,22,0x3a8611,DOUBLEWITHTWODWORD INTREE (0x33b00000 ,0x00000000)},
{VT_exponent,22,0x3a8612,DOUBLEWITHTWODWORD INTREE (0x33c00000,0x00000000)},
{VT_exponent,22,0x3a8613,DOUBLEWITHTWODWORD INTREE (0x33d00000,0x00000000)},
{VT_exponent,22,0x3a8614 ,DOUBLEWITHTWODWORD INTREE (0x33e00000,0x00000000)},
{VT_exponent,22,0x3a8615,DOUBLEWITHTWODWORD INTREE (0x33f00000,0x00000000)},
{VT_exponent,22,0x3a8616,DOUBLEWITHTWODWORD INTREE (0x34000000,0x00000000)},
{VT_exponent,22,0x3a8617 ,DOUBLEWITHTWODWORD INTREE (0x34100000,0x00000000)},
{VT_exponent,22,0x3a8618,DOUBLEWITHTWODWORD INTREE (0x34200000,0x00000000)},
{VT_exponent,22,0x3a8619, DOUBLEWITHTWODWORD INTREE(0x34300000,0x00000000)},
{VT_exponent,22,0x3a861a,DOUBLEWITHTWODWORD INTREE (0x34400000,0x00000000)},
{VT_exponent,22,0x3a861b,DOUBLEWITHTWODWORD INTREE (0x34500000 ,0x00000000)},
{VT_exponent,22,0x3a861c,DOUBLEWITHTWODWORD INTREE (0x34600000,0x00000000)},
{VT_exponent,22,0x3a861d,DOUBLEWITHTWODWORD INTREE(0x34700000,0x00000000)},
{VT_exponent,22,0x3a861e,DOUBLEWITHTWODWORD INTREE(0x34800000,0x00000000)},
{VT_exponent,22,0x3a861f,DOUBLEWITHTWODWORD INTREE (0x34900000,0x00000000)},
{VT_exponent,22,0x3a8620,DOUBLEWITHTWODWORD INTREE (0x34a00000,0x00000000)},
{VT_exponent,22,0x3a8621,DOUBLEWITHTWODWORD INTREE (0x34b00000 ,0x00000000)},
{VT_exponent,22,0x3a8622,DOUBLEWITHTWODWORD INTREE (0x34c00000,0x00000000)},
{VT_exponent,22,0x3a8623, DOUBLEWI THTWODWORD INTREE (0x34d00000 ,0x00000000)},
{VT_exponent,22,0x3a8624 ,DOUBLEWITHTWODWORD INTREE (0x34e00000,0x00000000)},
{VT_exponent,22,0x3a8625,DOUBLEWITHTWODWORD INTREE (0x34f00000,0x00000000)},
{VT_exponent,22,0x3a8626 ,DOUBLEWITHTWODWORD INTREE (0x35000000,0x00000000)},
{VT_exponent,22,0x3a8627 ,DOUBLEWITHTWODWORD INTREE (0x35100000,0x00000000)},
{VT_exponent,22,0x3a8628,DOUBLEWITHTWODWORD INTREE (0x35200000,0x00000000)},
{VT_exponent,22,0x3a8629, DOUBLEWITHTWODWORD INTREE(0x35300000 ,0x00000000)},
{VT_exponent,18,0x¥787 ,DOUBLEWITHTWODWORD INTREE (0x35400000,0x00000000)},

{VT_exponent,18,0xd1d4 , DOUBLEWI THTWODWORD INTREE (0x35500000 ,0x00000000) },

{VT_exponent,19,0x77F9Ff,DOUBLEWI THTWODWORD INTREE (0x35600000,0x00000000)},
{VT_exponent, 18 ,0x3b8fb,DOUBLEWI THTWODWORD INTREE (0x35700000 ,0x00000000)},

© IS0 2008 — All rights reserved 273

{VT_exponent,19,0xlefla,DOUBLEWITHTWODWORD INTREE(0x35800000,0x00000000)},

{VT_exponent,21,0x1d4315,DOUBLEWITHTWODWORD INTREE(0x35900000,0x00000000)},
{VT_exponent,16,0x3de2,DOUBLEWITHTWODWORD INTREE (0x35a00000,0x00000000)},

{VT_exponent,22,0x3a862c,DOUBLEWITHTWODWORD INTREE (0x35b00000,0x00000000)},
{VT_exponent,22,0x3a862d,DOUBLEWITHTWODWORD INTREE (0x35c00000,0x00000000)},
{VT_exponent,22,0x3a862e,DOUBLEWITHTWODWORD INTREE (0x35d00000 ,0x00000000)},
{VT_exponent,22,0x3a862F,DOUBLEWI THTWODWORD INTREE (0x35e00000,0x00000000)},
{VT_exponent,22,0x3a8630,DOUBLEWITHTWODWORD INTREE (0x35f00000,0x00000000)},
{VT_exponent,22,0x3a8631,DOUBLEWITHTWODWORD INTREE (0x36000000,0x00000000)},
{VT_exponent,22,0x3a8632, DOUBLEW I THTWODWORD INTREE (0x36100000,0x00000000)},
{VT_exponent,22,0x3a8633,DOUBLEWITHTWODWORD INTREE (0x36200000,0x00000000)},
{VT_exponent,22,0x3a8634 ,DOUBLEWITHTWODWORD INTREE (0x36300000,0x00000000)},
{VT_exponent,22,0x3a8635,DOUBLEWI THTWODWORD INTREE (0x36400000,0x00000000)},
{VT_exponent,22,0x3a8636,DOUBLEWITHTWODWORD INTREE (0x36500000,0x00000000)},
{VT_exponent,22,0x3a8637 ,DOUBLEWITHTWODWORD INTREE (0x36600000,0x00000000)},
{VT_exponent,22,0x3a8638,DOUBLEWITHTWODWORD INTREE (0x36700000,0x00000000)},
{VT_exponent,21,0x1d431d,DOUBLEWITHTWODWORD INTREE (0x36800000,0x00000000)},
{VT_exponent,22,0x3a8639,DOUBLEWITHTWODWORD INTREE (0x36900000,0x00000000)},
{VT_exponent,22,0x3a863c,DOUBLEWITHTWODWORD INTREE (0x36a00000,0x00000000)},
{VT_exponent,16,0x3de0,DOUBLEWITHTWODWORD INTREE (0x36b00000,0x00000000)},

{VT_exponent,18,0x3a95e ,DOUBLEWI THTWODWORD INTREE (0x36c00000,0x00000000)},

{VT_exponent,21,0x1d431f,DOUBLEWITHTWODWORD INTREE(0x36d00000,0x00000000)},
{VT_exponent,22,0x3a863d,DOUBLEWI THTWODWORD INTREE (0x36e00000,0x00000000)},
{VT_exponent,22,0x3a8640,DOUBLEWITHTWODWORD INTREE (0x36f00000,0x00000000)},
{VT_exponent,20,0x34749,DOUBLEWITHTWODWORD INTREE (0x37000000,0x00000000)},

{VT_exponent,20,0x3474d,DOUBLEWITHTWODWORD INTREE(0x37100000,0x00000000)},

{VT_exponent,22,0x3a8641,DOUBLEWITHTWODWORD INTREE (0x37200000,0x00000000)},
{VT_exponent,22,0x3a8642,DOUBLEWITHTWODWORD INTREE (0x37300000,0x00000000)},
{VT_exponent,22,0x3a8643,DOUBLEWITHTWODWORD INTREE (0x37400000,0x00000000)},
{VT_exponent,22,0x3a8644 ,DOUBLEW I THTWODWORD INTREE (0x37500000,0x00000000)},
{VT_exponent,22,0x3a8645,DOUBLEWI THTWODWORD INTREE (0x37600000,0x00000000)},
{VT_exponent,22,0x3a8646,DOUBLEWITHTWODWORD INTREE(0x37700000,0x00000000)},
{VT_exponent,22,0x3a8647 ,DOUBLEWITHTWODWORD INTREE (0x37800000,0x00000000)},
{VT_exponent,22,0x3a8648,DOUBLEWITHTWODWORD INTREE (0x37900000,0x00000000)},
{VT_exponent,22,0x3a8649,DOUBLEWITHTWODWORD INTREE (0x37a00000,0x00000000)},
{VT_exponent,22,0x3a864a,DOUBLEWITHTWODWORD INTREE (0x37b00000,0x00000000)},
{VT_exponent,22,0x3a864b,DOUBLEWITHTWODWORD INTREE (0x37c00000,0x00000000)},
{VT_exponent,22,0x3a864c,DOUBLEWITHTWODWORD INTREE (0x37d00000,0x00000000)},
{VT_exponent,22,0x3a864d,DOUBLEWITHTWODWORD INTREE (0x37e00000,0x00000000)},
{VT_exponent,22,0x3a864e , DOUBLEW I THTWODWORD INTREE (03700000, 0x00000000)},
{VT_exponent, 22,,0x3a864F , DOUBLEWI THTWODWORD INTREE(0x38000000 , 0x00000000)} ,
{VT_exponent,22,0x3a8650,DOUBLEWITHTWODWORD INTREE (0x38100000,0x00000000)},
{VT_exponent,22,0x3a8651,DOUBLEWITHTWODWORD INTREE (0x38200000,0x00000000)},
{VT_exponent,22,0x3a8652,DOUBLEWI THTWODWORD INTREE (0x38300000,0x00000000)},
{VT_exponent,22,0x3a8653,DOUBLEWI THTWODWORD INTREE (0x38400000,0x00000000)},
{VT_exponent,22,0x3a8654 ,DOUBLEWITHTWODWORD INTREE (0x38500000,0x00000000)},
{VT_exponent,22,0x3a8655,DOUBLEWI THTWODWORD INTREE (0x38600000,0x00000000)},
{VT_exponent,22,0x3a8656 ,DOUBLEWITHTWODWORD INTREE (0x38700000,0x00000000)},
{VT_exponent,22,0x3a8657 ,DOUBLEWITHTWODWORD INTREE (0x38800000,0x00000000)},
{VT_exponent,22,0x3a8658 , DOUBLEW I THTWODWORD INTREE (0x38900000, 0x00000000)},
{VT_exponent, 22, 0x3a8659 , DOUBLEWI THTWODWORD INTREE(0x38200000 , 0x00000000)} ,
{VT_exponent,22,0x3a865a,DOUBLEWI THTWODWORD INTREE (0x38b00000,0x00000000)},
{VT_exponent,22,0x3a865b,DOUBLEWITHTWODWORD INTREE (0x38c00000,0x00000000)},
{VT_exponent,22,0x3a865c,DOUBLEWITHTWODWORD INTREE (0x38d00000,0x00000000)},
{VT_exponent,22,0x3a865d,DOUBLEWITHTWODWORD INTREE (0x38e00000,0x00000000)},
{VT_exponent,21,0x1d432F,DOUBLEWITHTWODWORD INTREE (0x38f00000,0x00000000)},
{VT_exponent, 22,,0x3a8660 , DOUBLEWI THTWODWORD INTREE(0x39000000 , 0x00000000)} ,
{VT_exponent,22,0x3a8661,DOUBLEWITHTWODWORD INTREE (0x39100000,0x00000000)},
{VT_exponent,22,0x3a8662,DOUBLEWITHTWODWORD INTREE (0x39200000,0x00000000)},
{VT_exponent,21,0x1d4332,DOUBLEWITHTWODWORD INTREE (0x39300000,0x00000000)},
{VT_exponent, 18, 0xd1d5, DOUBLEW I THTWODWORD INTREE(0x39400000, 0x00000000) },

274 © 1SO 2008 — All rights reserved

{VT_exponent,18,0x3bfda,DOUBLEWITHTWODWORD INTREE (0x39500000,0x00000000)},
{VT_exponent, 15,0x7528,DOUBLEWI THTWODWORD INTREE (0x39600000,0x00000000)},
{VT_exponent,15,0x7529 ,DOUBLEWI THTWODWORD INTREE (0x39700000 ,0x00000000) },
{VT_exponent,18,0x3a95f,DOUBLEWITHTWODWORD INTREE (0x39800000,0x00000000)},
{VT_exponent,17,0x1d434 ,DOUBLEWITHTWODWORD INTREE(0x39900000,0x00000000)},
{VT_exponent,19,0x750cd , DOUBLEWI THTWODWORD INTREE (0x39200000 ,0x00000000)} ,
{VT_exponent,18,0x3a867 ,DOUBLEWITHTWODWORD INTREE (0x39b00000,0x00000000)},
{VT_exponent,19,0x771fd,DOUBLEWITHTWODWORD INTREE(0x39c00000,0x00000000)},
{VT_exponent,15,0x7764 ,DOUBLEWITHTWODWORD INTREE (0x39d00000 ,0x00000000) },
{VT_exponent,20,0xee3f9,DOUBLEWITHTWODWORD INTREE (0x39e00000,0x00000000)},
{VT_exponent,18,0x3bfdb,DOUBLEWITHTWODWORD INTREE (0x39f00000,0x00000000)},
{VT_exponent,16,0xeff7,DOUBLEWITHTWODWORD INTREE (0x3a000000,0x00000000)},
{VT_exponent, 18,0xd1d6,DOUBLEWITHTWODWORD INTREE (0x3a100000,0x00000000)},
{VT_exponent,22,0x3a8663,DOUBLEWITHTWODWORD INTREE (0x3a200000,0x00000000)},
{VT_exponent,22,0x3a8666 ,DOUBLEWITHTWODWORD INTREE (0x3a300000,0x00000000)},
{VT_exponent, 18,0x3b8fa, DOUBLEWITHTWODWORD INTREE (0x3a400000,0x00000000)},
{VT_exponent,17,0x1d435,DOUBLEWITHTWODWORD INTREE (0x3a500000,0x00000000)},
{VT_exponent,17,0x1dfe4,DOUBLEWITHTWODWORD INTREE(0x3a600000,0x00000000)},
{VT_exponent,19,0x750d8,DOUBLEWITHTWODWORD INTREE (0x3a700000,0x00000000)},
{VT_exponent, 18,0x3a95b ,DOUBLEWITHTWODWORD INTREE (0x3a800000,0x00000000) },
{VT_exponent,19,0x77f9e ,DOUBLEWITHTWODWORD INTREE (0x3a900000,0x00000000)},
{VT_exponent,19,0x750d9,DOUBLEWI THTWODWORD INTREE (0x3aa00000 ,0x00000000)},
{VT_exponent,18,0xd1d7,DOUBLEWITHTWODWORD INTREE (0x3ab00000,0x00000000)},
{VT_exponent,18,0x3b8ff,DOUBLEWITHTWODWORD INTREE (0x3ac00000,0x00000000)},
{VT_exponent,17,0x1dc7c,DOUBLEWITHTWODWORD INTREE(0x3ad00000,0x00000000)},
{VT_exponent,19,0x750da, DOUBLEWITHTWODWORD INTREE (0x3ae00000,0x00000000)},
{VT_exponent,17,0x7bc2,DOUBLEWITHTWODWORD INTREE (0x3af00000,0x00000000)},
{VT_exponent,18,0x3bfca,DOUBLEWITHTWODWORD INTREE (0x3b000000,0x00000000)},
{VT_exponent,19,0x1a3a5,DOUBLEWITHTWODWORD INTREE(0x3b100000,0x00000000)},
{VT_exponent,17,0x1d4ac, DOUBLEWI THTWODWORD INTREE (0x3b200000 ,0x00000000)},
{VT_exponent,18,0x3a86e,DOUBLEWITHTWODWORD INTREE (0x3b300000,0x00000000)},
{VT_exponent,17,0x1d438, DOUBLEWI THTWODWORD INTREE (0x3b400000 ,0x00000000)} ,
{VT_exponent, 18,0x3bfcb,DOUBLEWITHTWODWORD INTREE (0x3b500000,0x00000000) },
{VT_exponent,19,0x1a3a7,DOUBLEWITHTWODWORD INTREE(0x3b600000,0x00000000)},
{VT_exponent,17,0x1d4ae,DOUBLEWITHTWODWORD INTREE(0x3b700000,0x00000000)},
{VT_exponent,18,0x3bfce,DOUBLEWITHTWODWORD INTREE (0x3b800000,0x00000000)},
{VT_exponent,18,0x¥78c,DOUBLEWITHTWODWORD INTREE (0x3b900000,0x00000000)},
{VT_exponent,17,0x1dfec,DOUBLEWITHTWODWORD INTREE(0x3ba00000,0x00000000)},
{VT_exponent,17,0x1d439,DOUBLEWITHTWODWORD INTREE(0x3bb00000 ,0x00000000)},
{VT_exponent,17,0x68e8,DOUBLEWITHTWODWORD INTREE (0x3bc00000,0x00000000)},
{VT_exponent, 18,0xf786, DOUBLEWI THTWODWORD INTREE (0x3bd00000 ,0x00000000)},
{VT_exponent,15,0x771e,DOUBLEWITHTWODWORD INTREE (0x3be00000,0x00000000)},
{VT_exponent,17,0x1dfe6,DOUBLEWITHTWODWORD INTREE(0x3bf00000,0x00000000)},
{VT_exponent,15,0x77¥8,DOUBLEWITHTWODWORD INTREE (0x3c000000,0x00000000)},
{VT_exponent,14,0x3bb3,DOUBLEWITHTWODWORD INTREE(0x3c100000,0x00000000)},
{VT_exponent,14,0x3b8e,DOUBLEWITHTWODWORD INTREE(0x3c200000,0x00000000)},
{VT_exponent,14,0x3a82,DOUBLEWITHTWODWORD INTREE (0x3c300000,0x00000000)},
{VT_exponent,14,0x3b96 ,DOUBLEWITHTWODWORD INTREE (0x3c400000,0x00000000)},
{VT_exponent,13,0x68F,DOUBLEWITHTWODWORD INTREE (0x3c500000,0x00000000)},
{VT_exponent,12,0x3d4,DOUBLEWITHTWODWORD INTREE (0x3c600000,0x00000000)},
{VT_exponent, 13,0x1dca, DOUBLEWITHTWODWORD INTREE (0x3c700000,0x00000000)},
{VT_exponent,12,0x346,DOUBLEWITHTWODWORD INTREE (0x3c800000,0x00000000)},
{VT_exponent,12,0xee7 ,DOUBLEWI THTWODWORD INTREE(0x3c900000,0x00000000)} ,
{VT_exponent,12,0xeea, DOUBLEWITHTWODWORD INTREE (0x3ca00000,0x00000000)},
{VT_exponent,11,0xled,DOUBLEWITHTWODWORD INTREE(0x3cb00000,0x00000000)},
{VT_exponent,12,0x3df,DOUBLEWITHTWODWORD INTREE(0x3cc00000,0x00000000)},
{VT_exponent,11,0x1a2,DOUBLEWITHTWODWORD INTREE(0x3cd00000,0x00000000)},
{VT_exponent,11,0x56f,DOUBLEWITHTWODWORD INTREE(0x3ce00000,0x00000000)},
{VT_exponent,11,0xb9, DOUBLEWITHTWODWORD INTREE (0x3cf00000,0x00000000)},
{VT_exponent,13,0x7b2,DOUBLEWI THTWODWORD INTREE (0x3d000000 ,0x00000000) },
{VT_exponent,13,0x1dd8, DOUBLEWITHTWODWORD INTREE (0x3d100000,0x00000000)},

© IS0 2008 — All rights reserved 275

{VT_exponent,13,0x15ba,DOUBLEWITHTWODWORD INTREE(0x3d200000,0x00000000)},
{VT_exponent,12,0xee6,DOUBLEWITHTWODWORD INTREE (0x3d300000,0x00000000)},
{VT_exponent,13,0x15b8,DOUBLEWITHTWODWORD INTREE (0x3d400000,0x00000000)},
{VT_exponent,14,0xf79,DOUBLEWITHTWODWORD INTREE(0x3d500000,0x00000000)},
{VT_exponent,14,0x3a81,DOUBLEWITHTWODWORD INTREE(0x3d600000,0x00000000)},
{VT_exponent,14,0xd1c, DOUBLEWITHTWODWORD INTREE (0x3d700000,0x00000000) },
{VT_exponent,15,0x7765,DOUBLEWITHTWODWORD INTREE (0x3d800000,0x00000000)},
{VT_exponent,14,0xf54 ,DOUBLEWITHTWODWORD INTREE (0x3d900000,0x00000000)},
{VT_exponent,13,0x15b9 , DOUBLEWI THTWODWORD INTREE (0x3da00000 ,0x00000000)},
{VT_exponent,13,0x7ab, DOUBLEWI THTWODWORD INTREE (0x3db00000 , 0x00000000) },
{VT_exponent,15,0x7500,DOUBLEWITHTWODWORD INTREE (0x3dc00000,0x00000000)},
{VT_exponent,15,0xleaa, DOUBLEWI THTWODWORD INTREE (0x3dd00000,0x00000000)},
{VT_exponent,15,0x7501,DOUBLEWI THTWODWORD INTREE (0x3de00000,0x00000000)},
{VT_exponent,15,0xleab,DOUBLEWITHTWODWORD INTREE(0x3df00000,0x00000000)},
{VT_exponent,14,0x3b97 ,DOUBLEWITHTWODWORD INTREE (0x3e000000,0x00000000)},
{VT_exponent,15,0x752a,DOUBLEWI THTWODWORD INTREE (0x3e100000,0x00000000)},
{VT_exponent,15,0x77Ffa,DOUBLEWITHTWODWORD INTREE (0x3e€200000,0x00000000)},
{VT_double,10,0xf4,DOUBLEWITHTWODWORD INTREE (0x3e35798e,0xe2308c3a)},
{VT_exponent, 14,0x3a93, DOUBLEWI THTWODWORD INTREE (0x3e300000,0x00000000)},
{VT_double,11,0x77c,DOUBLEWI THTWODWORD INTREE(0x3e45798e ,0xe2308c3a)},
{VT_exponent,13,0x1dc6,DOUBLEWITHTWODWORD INTREE (0x3e400000,0x00000000)},
{VT_exponent,13,0x7bd,DOUBLEWITHTWODWORD INTREE (0x3e500000,0x00000000)},
{VT_exponent,13,0x1dff,DOUBLEWITHTWODWORD INTREE (0x3e600000,0x00000000)},
{VT_exponent,12,0xefe,DOUBLEWITHTWODWORD INTREE(0x3e700000,0x00000000)},
{VT_double,8,0xaf,DOUBLEWITHTWODWORD INTREE (0x3e8ad7f2,0x9abcaf4a)},
{VT_exponent,12,0xeed,DOUBLEWITHTWODWORD INTREE(0x3e800000,0x00000000)},
{VT_exponent,11,0xb8,DOUBLEWITHTWODWORD INTREE (0x3e900000,0x00000000)},
{VT_exponent,12,0x3d8,DOUBLEWITHTWODWORD INTREE (0x3ea00000,0x00000000)},
{VT_exponent,11,0xleb,DOUBLEWITHTWODWORD INTREE(0x3eb00000,0x00000000)},
{VT_double,9,0x1d2, DOUBLEWI THTWODWORD INTREE (0x3ecOc6F7 ,0xaOb5edse)},
{VT_exponent,13,0x1d4b,DOUBLEWITHTWODWORD INTREE(0x3ec00000,0x00000000)},
{VT_exponent,13,0x7b3,DOUBLEWITHTWODWORD INTREE (0x3ed00000,0x00000000)},
{VT_exponent,10,0x5d, DOUBLEWITHTWODWORD INTREE (0x3ee00000,0x00000000)},
{VT_exponent,12,0xeeb,DOUBLEWITHTWODWORD INTREE (0x3ef00000,0x00000000)},
{VT_exponent,11,0xlee,DOUBLEWITHTWODWORD INTREE(0x3f000000,0x00000000)},
{VT_exponent,10,0x5f,DOUBLEWITHTWODWORD INTREE (0x3¥100000,0x00000000)},
{VT_exponent,10,0x2b6 ,DOUBLEWITHTWODWORD INTREE (0x3f200000,0x00000000)},
{VT_exponent,9,0x1de,DOUBLEWITHTWODWORD INTREE (0x3¥300000,0x00000000)},
{VT_double,10,0xd0,DOUBLEWITHTWODWORD INTREE (0x3f454c98,0x5Ff06F694)},
{VT_double,6,0x9,DOUBLEWI THTWODWORD INTREE (0x3F4a36e2,0xeblc432d)},
{VT_exponent, 8,0xe8 , DOUBLEWI THTWODWORD INTREE (0x3400000 , 0x00000000) },
{VT_double,4,0xf,DOUBLEWITHTWODWORD INTREE (0x3f50624d,0xd2f1a9fc)},
{VT_exponent,8,0xae, DOUBLEWI THTWODWORD INTREE (0x3500000,0x00000000)},
{VT_double,5,0x16,DOUBLEWITHTWODWORD INTREE (0x3160624d,0xd2f1a9fc)},
{VT_exponent,7,0x1b,DOUBLEWITHTWODWORD INTREE(0x3¥600000,0x00000000)},
{VT_exponent,7,0x76,DOUBLEWITHTWODWORD INTREE (0x3¥700000,0x00000000)},
{VT_exponent,7,0xa,DOUBLEWITHTWODWORD INTREE (0x3F800000,0x00000000)},
{VT_exponent,6,0x8,DOUBLEWITHTWODWORD INTREE (0x3F900000,0x00000000)},
{VT_exponent, 6, 0xe , DOUBLEWI THTWODWORD I NTREE (0x3fa00000 , 0x00000000)} ,
{VT_double,11,0x751,DOUBLEWITHTWODWORD INTREE (0x3fbe69ad, 0x42c3c9ee)},
{VT_exponent, 6,,0x4 , DOUBLEW I THTWODWORD I NTREE (0x3fb00000 , 0x00000000) },
{VT_exponent,6,0xc,DOUBLEWITHTWODWORD INTREE (0x3fc00000,0x00000000)},
{VT_exponent, 5,0x3 , DOUBLEWI THTWODWORD INTREE (0x3fd00000 , 0x00000000)} ,
{VT_double,11,0x777,DOUBLEWITHTWODWORD INTREE (0x3fe00000,0x00000000)},
{VT_double,9,0x1d6,DOUBLEWITHTWODWORD INTREE (Ox3fefffff,0xFf8000002)},
{VT_exponent,4,0x8,DOUBLEWITHTWODWORD INTREE (0x3fe00000,0x00000000)},
{VT_double,4,0x0, DOUBLEWI THTWODWORD INTREE (0x3FF00000 , 0x00000000) },
{VT_exponent,5,0x13,DOUBLEWITHTWODWORD INTREE (0x3ff00000, 0x00000000)},
{VT_exponent,5,0x1b,DOUBLEWITHTWODWORD INTREE (0x40000000,0x00000000)},
{VT_double,9,0x15a,DOUBLEWITHTWODWORD INTREE(0x401921fb,0x54442d18)},
{VT_exponent,5,0x17 , DOUBLEWI THTWODWORD INTREE(0x40100000 , 0x00000000) },

276 © 1SO 2008 — All rights reserved

{VT_exponent,5,0x12,DOUBLEWITHTWODWORD INTREE (0x40200000,0x00000000)},
{VT_double,11,0x774,DOUBLEWITHTWODWORD INTREE (0x4035ee14,0x80000000)},
{VT_exponent,5,0x19,DOUBLEW I THTWODWORD INTREE (0x40300000,0x00000000)} ,
{VT_double,9,0x1d3,DOUBLEWITHTWODWORD INTREE (0x404ca5dc,0x1a63c1f8)},
{VT_exponent,5,0x1a,DOUBLEWITHTWODWORD INTREE (0x40400000,0x00000000)},
{VT_double,11,0x77e ,DOUBLEWI THTWODWORD INTREE (0x405bb32F ,0xe0000000)} ,
{VT_double,10,0x5e,DOUBLEWITHTWODWORD INTREE (0x405c332f,0xe0000000)},
{VT_exponent,5,0x18,DOUBLEWITHTWODWORD INTREE (0x40500000, 0x00000000)},
{VT_double,9,0x1d7,DOUBLEWITHTWODWORD INTREE (0x40668000,0x00000000)},
{VT_exponent,5,0x1c,DOUBLEW I THTWODWORD INTREE(0x40600000 ,0x00000000)},
{VT_double,9,0x1d5,DOUBLEWITHTWODWORD INTREE (0x40768000,0x00000000)},
{VT_exponent,5,0x14 ,DOUBLEWI THTWODWORD INTREE (0x40700000 ,0x00000000)} ,
{VT_double,11,0x77d,DOUBLEWITHTWODWORD INTREE (0x408f4000,0x00000000)},
{VT_exponent,5,0x5,DOUBLEWITHTWODWORD INTREE (0x40800000,0x00000000)},
{VT_double,10,0xd2,DOUBLEWITHTWODWORD INTREE (0x409233ff,OXffffffff)},
{VT_double,8,0x3c,DOUBLEWITHTWODWORD INTREE (0x40923400,0x00000000)},
{VT_double,11,0x753,DOUBLEWITHTWODWORD INTREE (0x40923400,0x00000001)},
{VT_double,10,0xd3,DOUBLEWITHTWODWORD INTREE (0x4092abff , OXffffffff)},
{VT_double,8,0x35,DOUBLEWITHTWODWORD INTREE (0x4092ac00,0x00000000)},
{VT_double,11,0x770,DOUBLEWI THTWODWORD INTREE(0x4092ac00,0x00000001)},
{VT_exponent,8,0x16,DOUBLEWITHTWODWORD INTREE (0x40900000,0x00000000)},
{VT_exponent,12,0xee2,DOUBLEWITHTWODWORD INTREE (0x40a00000,0x00000000)},
{VT_exponent,12,0xee4,DOUBLEWITHTWODWORD INTREE (0x40b00000,0x00000000)},
{VT_double,7,0x1f,DOUBLEWITHTWODWORD INTREE (0x40c81c80,0x00000000)},
{VT_exponent,8,0xac,DOUBLEWITHTWODWORD INTREE (0x40c00000, 0x00000000)},
{VT_exponent,13,0x15bb,DOUBLEWITHTWODWORD INTREE (0x40d00000,0x00000000)},
{VT_exponent,22,0x3a8667 ,DOUBLEWITHTWODWORD INTREE (0x40e00000,0x00000000)},
{VT_exponent,22,0x3a86d8,DOUBLEWITHTWODWORD INTREE (0x40¥00000,0x00000000)},
{VT_exponent, 22 ,0x3a86d9, DOUBLEWI THTWODWORD INTREE (0x41000000 ,0x00000000)} ,
{VT_exponent, 22 ,0x3a86da , DOUBLEWI THTWODWORD INTREE (0x41100000 ,0x00000000)} ,
{VT_exponent,17,0x1dc7e,DOUBLEWITHTWODWORD INTREE(0x41200000,0x00000000)},
{VT_exponent,22,0x3a86db,DOUBLEWITHTWODWORD INTREE (0x41300000,0x00000000)},
{VT_exponent, 22 ,0x3a86dc , DOUBLEWI THTWODWORD INTREE (0x41400000 ,0x00000000)},
{VT_exponent,22,0x3a86dd,DOUBLEWITHTWODWORD INTREE (0x41500000,0x00000000)},
{VT_exponent,22,0x3a86de ,DOUBLEWI THTWODWORD INTREE (0x41600000,0x00000000)},
{VT_exponent,22,0x3a86df,DOUBLEWITHTWODWORD INTREE(0x41700000,0x00000000)},
{VT_exponent,22,0x3a86F0,DOUBLEWITHTWODWORD INTREE (0x41800000,0x00000000)},
{VT_exponent,22,0x3a86f1,DOUBLEWITHTWODWORD INTREE (0x41900000,0x00000000)},
{VT_exponent,22,0x3a86f2,DOUBLEWITHTWODWORD INTREE (0x41a00000 ,0x00000000)},
{VT_exponent,22,0x3a86F3,DOUBLEWITHTWODWORD INTREE (0x41b00000,0x00000000)},
{VT_double,6,0x2a,DOUBLEWITHTWODWORD INTREE(0x41cdcd64 ,0xff800000)},
{VT_exponent,22,0x3a86f4,DOUBLEWITHTWODWORD INTREE (0x41c00000,0x00000000)},
{VT_exponent,22,0x3a86f5,DOUBLEWITHTWODWORD INTREE (0x41d00000 ,0x00000000)},
{VT_exponent,22,0x3a86f6,DOUBLEWI THTWODWORD INTREE (0x41e00000,0x00000000)},
{VT_exponent,22,0x3a86f7,DOUBLEWITHTWODWORD INTREE (0x41f00000,0x00000000)},
{VT_exponent,22,0x3a86f8,DOUBLEWITHTWODWORD INTREE (0x42000000,0x00000000)},
{VT_exponent,22,0x3a86F9,DOUBLEWI THTWODWORD INTREE (0x42100000,0x00000000)},
{VT_exponent,22,0x3a86fa,DOUBLEWITHTWODWORD INTREE (0x42200000,0x00000000)},
{VT_exponent,22,0x3a86fb ,DOUBLEWITHTWODWORD INTREE (0x42300000,0x00000000)},
{VT_exponent, 22 ,0x3a86Fc , DOUBLEWI THTWODWORD INTREE (0x42400000 ,0x00000000)} ,
{VT_exponent,22,0x3a86fd,DOUBLEWITHTWODWORD INTREE (0x42500000,0x00000000) },
{VT_exponent,22,0x3a86fe,DOUBLEWITHTWODWORD INTREE (0x42600000,0x00000000)},
{VT_exponent,22,0x3a86Ff,DOUBLEWITHTWODWORD INTREE (0x42700000,0x00000000)},
{VT_exponent,22,0x3a8740,DOUBLEWITHTWODWORD INTREE (0x42800000,0x00000000)},
{VT_exponent,22,0x3a8741,DOUBLEWITHTWODWORD INTREE (0x42900000,0x00000000)},
{VT_exponent,22,0x3a8742,DOUBLEWITHTWODWORD INTREE (0x42a00000,0x00000000)},
{VT_exponent,22,0x3a8743,DOUBLEWITHTWODWORD INTREE (0x42b00000,0x00000000) },
{VT_exponent,22,0x3a8744 ,DOUBLEWITHTWODWORD INTREE (0x42c00000,0x00000000)},
{VT_exponent,22,0x3a8745 , DOUBLEWI THTWODWORD INTREE (0x42d00000 ,0x00000000)},
{VT_exponent,22,0x3a8746,DOUBLEWI THTWODWORD INTREE (0x42e00000,0x00000000)},
{VT_exponent,22,0x3a8747 ,DOUBLEWITHTWODWORD INTREE (0x42f00000,0x00000000)},

© IS0 2008 — All rights reserved 277

{VT_exponent,22,0x3a8748,DOUBLEWI THTWODWORD INTREE (0x43000000,0x00000000)},
{VT_exponent,22,0x3a8749,DOUBLEWITHTWODWORD INTREE (0x43100000,0x00000000)},
{VT_exponent,22,0x3a874a,DOUBLEWITHTWODWORD INTREE (0x43200000,0x00000000)},
{VT_exponent,22,0x3a874b,DOUBLEWI THTWODWORD INTREE (0x43300000,0x00000000)},
{VT_exponent,22,0x3a874c,DOUBLEWITHTWODWORD INTREE (0x43400000,0x00000000)},
{VT_exponent,22,0x3a874d,DOUBLEWITHTWODWORD INTREE (0x43500000,0x00000000)},
{VT_exponent,22,0x3a874e,DOUBLEWI THTWODWORD INTREE (0x43600000,0x00000000)},
{VT_exponent,22,0x3a874f,DOUBLEWI THTWODWORD INTREE (0x43700000,0x00000000)},
{VT_exponent,22,0x3a8750,DOUBLEWITHTWODWORD INTREE (0x43800000,0x00000000)},
{VT_exponent,22,0x3a8751 , DOUBLEWI THTWODWORD INTREE (0x43900000 , 0x00000000) },
{VT_exponent,22,0x3a8752,DOUBLEWI THTWODWORD INTREE (0x43a00000,0x00000000)},
{VT_exponent,22,0x3a8753,DOUBLEWITHTWODWORD INTREE (0x43b00000,0x00000000)},
{VT_exponent,22,0x3a8754 ,DOUBLEWITHTWODWORD INTREE (0x43c00000,0x00000000)},
{VT_exponent,22,0x3a8755,DOUBLEWI THTWODWORD INTREE (0x43d00000,0x00000000)},
{VT_exponent,22,0x3a8756 ,DOUBLEWITHTWODWORD INTREE (0x43e00000,0x00000000)},
{VT_exponent,22,0x3a8757 ,DOUBLEWITHTWODWORD INTREE (0x43f00000,0x00000000)},
{VT_exponent,22,0x3a8758,DOUBLEWI THTWODWORD INTREE (0x44000000,0x00000000)},
{VT_exponent,15,0x1a3b,DOUBLEWITHTWODWORD INTREE(0x44100000,0x00000000)},

{VT_exponent,22,0x3a8759,DOUBLEWITHTWODWORD INTREE (0x44200000,0x00000000)},
{VT_exponent, 22 ,0x3a875a, DOUBLEWI THTWODWORD INTREE (0x44300000 , 0x00000000) },
{VT_exponent,22,0x3a875b,DOUBLEWI THTWODWORD INTREE (0x44400000,0x00000000)},
{VT_exponent, 22 ,0x3a875c, DOUBLEWI THTWODWORD INTREE (0x44500000 , 0x00000000) },
{VT_exponent,22,0x3a875d,DOUBLEWITHTWODWORD INTREE (0x44600000,0x00000000)},
{VT_exponent,22,0x3a875e,DOUBLEWI THTWODWORD INTREE (0x44700000,0x00000000)},
{VT_exponent,22,0x3a875f,DOUBLEWI THTWODWORD INTREE (0x44800000,0x00000000)},
{VT_exponent,22,0x3a8760,DOUBLEWITHTWODWORD INTREE (0x44900000,0x00000000)},
{VT_exponent,22,0x3a8761,DOUBLEWITHTWODWORD INTREE (0x44a00000,0x00000000)},
{VT_exponent,22,0x3a8762,DOUBLEWITHTWODWORD INTREE (0x44b00000,0x00000000)},
{VT_exponent,22,0x3a8763,DOUBLEWITHTWODWORD INTREE (0x44c00000,0x00000000)},
{VT_exponent, 22 ,0x3a8764 , DOUBLEWI THTWODWORD INTREE (0x44d00000 , 0x00000000) },
{VT_exponent,22,0x3a8765,DOUBLEWI THTWODWORD INTREE (0x44e00000,0x00000000)},
{VT_exponent,22,0x3a8766 ,DOUBLEW I THTWODWORD INTREE (0x44F00000, 0x00000000)},
{VT_exponent,22,0x3a8767 ,DOUBLEWITHTWODWORD INTREE (0x45000000,0x00000000)},
{VT_exponent,22,0x3a8768,DOUBLEWI THTWODWORD INTREE (0x45100000,0x00000000)},
{VT_exponent,22,0x3a8769,DOUBLEWITHTWODWORD INTREE (0x45200000,0x00000000)},
{VT_exponent,22,0x3a876a,DOUBLEWITHTWODWORD INTREE (0x45300000,0x00000000)},
{VT_exponent,22,0x3a876b,DOUBLEWI THTWODWORD INTREE (0x45400000,0x00000000)},
{VT_exponent,22,0x3a876c,DOUBLEWI THTWODWORD INTREE (0x45500000,0x00000000)},
{VT_exponent,22,0x3a876d,DOUBLEWITHTWODWORD INTREE (0x45600000,0x00000000)},
{VT_exponent, 22 ,0x3a876e , DOUBLEWI THTWODWORD INTREE (0x45700000 , 0x00000000) },
{VT_exponent,22,0x3a876F, DOUBLEWI THTWODWORD INTREE (0x45800000 ,0x00000000)},
{VT_exponent,22,0x3a8770,DOUBLEWITHTWODWORD INTREE (0x45900000,0x00000000)},
{VT_exponent,22,0x3a8771,DOUBLEWITHTWODWORD INTREE (0x45a00000,0x00000000)},
{VT_exponent,22,0x3a8772,DOUBLEWITHTWODWORD INTREE (0x45b00000,0x00000000)},
{VT_exponent,22,0x3a8773,DOUBLEWI THTWODWORD INTREE (0x45c00000,0x00000000)},
{VT_exponent,22,0x3a8774,DOUBLEWITHTWODWORD INTREE (0x45d00000,0x00000000)},
{VT_exponent,22,0x3a8775,DOUBLEWI THTWODWORD INTREE (0x45e00000,0x00000000)},
{VT_exponent,22,0x3a8776,DOUBLEWITHTWODWORD INTREE (0x45f00000,0x00000000)},
{VT_exponent,22,0x3a8777,DOUBLEWITHTWODWORD INTREE (0x46000000,0x00000000)},
{VT_exponent, 22 ,0x3a8778 , DOUBLEWI THTWODWORD INTREE (0x46100000 , 0x00000000) },
{VT_exponent,22,0x3a8779, DOUBLEWI THTWODWORD INTREE (0x46200000 ,0x00000000)},
{VT_exponent,22,0x3a877a,DOUBLEWITHTWODWORD INTREE (0x46300000,0x00000000)},
{VT_exponent 22 ,0x3a877b , DOUBLEW I THTWODWORD INTREE (0x46400000,0x00000000)},
{VT_exponent,22,0x3a877c,DOUBLEWITHTWODWORD INTREE (0x46500000,0x00000000)},
{VT_exponent,22,0x3a877d,DOUBLEWITHTWODWORD INTREE (0x46600000,0x00000000)},
{VT_exponent,22,0x3a877e,DOUBLEWITHTWODWORD INTREE (0x46700000,0x00000000)},
{VT_exponent,22,0x3a877f,DOUBLEWI THTWODWORD INTREE (0x46800000 ,0x00000000)},
{VT_exponent,22,0x3a8780,DOUBLEWITHTWODWORD INTREE (0x46900000,0x00000000)},
{VT_exponent,22,0x3a8781,DOUBLEWITHTWODWORD INTREE (0x46a00000,0x00000000)},
{VT_exponent,22,0x3a8782,DOUBLEWITHTWODWORD INTREE (0x46b00000,0x00000000)},
{VT_exponent,22,0x3a8783, DOUBLEWI THTWODWORD INTREE (0x46c00000 ,0x00000000)},

278 © 1SO 2008 — All rights reserved

{VT_exponent,22,0x3a8784 ,DOUBLEWITHTWODWORD INTREE (0x46d00000,0x00000000)},
{VT_exponent,22,0x3a8785,DOUBLEWI THTWODWORD INTREE (0x46e00000,0x00000000) },
{VT_exponent,22,0x3a8786,DOUBLEWI THTWODWORD INTREE (0x46f00000,0x00000000) },
{VT_exponent,22,0x3a8787 ,DOUBLEWITHTWODWORD INTREE (0x47000000,0x00000000)},
{VT_exponent,22,0x3a8788,DOUBLEWITHTWODWORD INTREE (0x47100000,0x00000000)},
{VT_exponent,22,0x3a8789,DOUBLEWITHTWODWORD INTREE (0x47200000 ,0x00000000)},
{VT_exponent,22,0x3a878a,DOUBLEWI THTWODWORD INTREE (0x47300000,0x00000000)},
{VT_exponent,22,0x3a878b,DOUBLEWITHTWODWORD INTREE (0x47400000,0x00000000)},
{VT_exponent,22,0x3a878c, DOUBLEWI THTWODWORD INTREE (0x47500000 ,0x00000000)} ,
{VT_exponent, 22 ,0x3a878d , DOUBLEWI THTWODWORD INTREE (0x47600000 ,0x00000000) } ,
{VT_exponent,22,0x3a878e,DOUBLEWITHTWODWORD INTREE (0x47700000,0x00000000)},
{VT_exponent,22,0x3a878F,DOUBLEWITHTWODWORD INTREE (0x47800000 ,0x00000000)},
{VT_exponent,22,0x3a8790, DOUBLEWI THTWODWORD INTREE (0x47900000 ,0x00000000)} ,
{VT_exponent,22,0x3a8791,DOUBLEWITHTWODWORD INTREE (0x47a00000,0x00000000)},
{VT_exponent,22,0x3a8792,DOUBLEWITHTWODWORD INTREE (0x47b00000,0x00000000)},
{VT_exponent,22,0x3a8793,DOUBLEWITHTWODWORD INTREE (0x47c00000,0x00000000)},
{VT_exponent,22,0x3a8794 ,DOUBLEWI THTWODWORD INTREE (0x47d00000,0x00000000)},
{VT_exponent,22,0x3a8795,DOUBLEWI THTWODWORD INTREE (0x47e00000,0x00000000)},
{VT_exponent,22,0x3a8796 , DOUBLEWI THTWODWORD INTREE (0x4 700000 ,0x00000000)} ,
{VT_exponent,22,0x3a8797 ,DOUBLEWITHTWODWORD INTREE (0x48000000 ,0x00000000)},
{VT_exponent,22,0x3a8798,DOUBLEWITHTWODWORD INTREE (0x48100000,0x00000000)},
{VT_exponent,22,0x3a8799,DOUBLEWITHTWODWORD INTREE (0x48200000 ,0x00000000)},
{VT_exponent,22,0x3a879a,DOUBLEWI THTWODWORD INTREE (0x48300000,0x00000000) },
{VT_exponent,22,0x3a879b,DOUBLEWITHTWODWORD INTREE (0x48400000,0x00000000)},
{VT_exponent,22,0x3a879c,DOUBLEWITHTWODWORD INTREE (0x48500000,0x00000000)},
{VT_exponent,22,0x3a879d,DOUBLEWITHTWODWORD INTREE (0x48600000,0x00000000)},
{VT_exponent,22,0x3a879¢e,DOUBLEWI THTWODWORD INTREE (0x48700000,0x00000000)},
{VT_exponent,22,0x3a879Ff,DOUBLEWI THTWODWORD INTREE (0x48800000,0x00000000)},
{VT_exponent,22,0x3a87a0,DOUBLEWI THTWODWORD INTREE (0x48900000,0x00000000)},
{VT_exponent,22,0x3a87al,DOUBLEWITHTWODWORD INTREE (0x48a00000,0x00000000)},
{VT_exponent,22,0x3a87a2,DOUBLEWI THTWODWORD INTREE (0x48b00000,0x00000000)},
{VT_exponent,22,0x3a87a3,DOUBLEWITHTWODWORD INTREE (0x48c00000,0x00000000)},
{VT_exponent,22,0x3a87a4,DOUBLEWI THTWODWORD INTREE (0x48d00000,0x00000000)},
{VT_exponent,22,0x3a87a5,DOUBLEWI THTWODWORD INTREE (0x48e00000,0x00000000)},
{VT_exponent,22,0x3a87a6,DOUBLEWITHTWODWORD INTREE (0x48f00000,0x00000000)},
{VT_exponent,22,0x3a87a7,DOUBLEWITHTWODWORD INTREE (0x49000000,0x00000000)},
{VT_exponent,22,0x3a87a8,DOUBLEWI THTWODWORD INTREE (0x49100000,0x00000000)},
{VT_exponent,22,0x3a87a9,DOUBLEWITHTWODWORD INTREE (0x49200000,0x00000000)},
{VT_exponent,22,0x3a87aa, DOUBLEWITHTWODWORD INTREE (0x49300000,0x00000000)},
{VT_exponent,22,0x3a87ab,DOUBLEWITHTWODWORD INTREE (0x49400000,0x00000000)},
{VT_exponent,22,0x3a87ac, DOUBLEWI THTWODWORD INTREE (0x49500000 ,0x00000000)},
{VT_exponent,22,0x3a87ad,DOUBLEWITHTWODWORD INTREE (0x49600000,0x00000000)},
{VT_exponent,22,0x3a87ae ,DOUBLEWITHTWODWORD INTREE (0x49700000 ,0x00000000)},
{VT_exponent,22,0x3a87af,DOUBLEWITHTWODWORD INTREE (0x49800000,0x00000000)},
{VT_exponent,22,0x3a87b0,DOUBLEWITHTWODWORD INTREE (0x49900000,0x00000000)},
{VT_exponent,22,0x3a87b1,DOUBLEWITHTWODWORD INTREE (0x49a00000,0x00000000)},
{VT_exponent,22,0x3a87b2,DOUBLEWI THTWODWORD INTREE (0x49b00000,0x00000000)},
{VT_exponent,22,0x3a87b3,DOUBLEWITHTWODWORD INTREE (0x49c00000,0x00000000)},
{VT_exponent,22,0x3a87b4 ,DOUBLEWI THTWODWORD INTREE (0x49d00000,,0x00000000) },
{VT_exponent,22,0x3a87b5,DOUBLEWITHTWODWORD INTREE (0x49e00000,0x00000000) },
{VT_exponent,22,0x3a87b6, DOUBLEWI THTWODWORD INTREE (0x49f00000 ,0x00000000)},
{VT_exponent,22,0x3a87b7,DOUBLEWITHTWODWORD INTREE (0x4a000000,0x00000000)},
{VT_exponent,22,0x3a87b8,DOUBLEWITHTWODWORD INTREE (0x4a100000 ,0x00000000)},
{VT_exponent,22,0x3a87b9,DOUBLEWITHTWODWORD INTREE (0x4a200000,0x00000000)},
{VT_exponent,22,0x3a87ba,DOUBLEWITHTWODWORD INTREE (0x4a300000,0x00000000)},
{VT_exponent,22,0x3a87bb,DOUBLEWITHTWODWORD INTREE (0x4a400000,0x00000000)},
{VT_exponent,22,0x3a87bc, DOUBLEWITHTWODWORD INTREE (0x4a500000 ,0x00000000)},
{VT_exponent,22,0x3a87bd,DOUBLEWITHTWODWORD INTREE (0x4a600000,0x00000000)},
{VT_exponent,22,0x3a87be ,DOUBLEWITHTWODWORD INTREE (0x4a700000 ,0x00000000)},
{VT_exponent,22,0x3a87bf,DOUBLEWITHTWODWORD INTREE (0x4a800000 ,0x00000000)},
{VT_exponent,22,0x3a87c0,DOUBLEWITHTWODWORD INTREE (0x4a900000 ,0x00000000)},

© IS0 2008 — All rights reserved 279

{VT_exponent,22,0x3a87cl,DOUBLEWITHTWODWORD INTREE (0x4aa00000,0x00000000)},
{VT_exponent,22,0x3a87c2,DOUBLEWITHTWODWORD INTREE (0x4ab00000,0x00000000)},
{VT_exponent,22,0x3a87c3,DOUBLEWITHTWODWORD INTREE (0x4ac00000,0x00000000)},
{VT_exponent,22,0x3a87c4,DOUBLEWI THTWODWORD INTREE (0x4ad00000,0x00000000)},
{VT_exponent,22,0x3a87c5,DOUBLEWI THTWODWORD INTREE (0x4ae00000,0x00000000)},
{VT_exponent,22,0x3a87c6,DOUBLEWITHTWODWORD INTREE (0x4af00000,0x00000000)},
{VT_exponent,22,0x3a87c7,DOUBLEWITHTWODWORD INTREE (0x4b000000,0x00000000)},
{VT_exponent,22,0x3a87c8,DOUBLEWI THTWODWORD INTREE (0x4b100000,0x00000000)},
{VT_exponent,22,0x3a87c9,DOUBLEWI THTWODWORD INTREE (0x4b200000,0x00000000) },
{VT_exponent, 22 ,0x3a87ca, DOUBLEW I THTWODWORD INTREE (0x4b300000, 0x00000000)},
{VT_exponent,22,0x3a87cb,DOUBLEWITHTWODWORD INTREE (0x4b400000,0x00000000)},
{VT_exponent,22,0x3a87cc,DOUBLEWITHTWODWORD INTREE (0x4b500000,0x00000000)},
{VT_exponent,22,0x3a87cd, DOUBLEWI THTWODWORD INTREE (0x4b600000 ,0x00000000) },
{VT_exponent,22,0x3a87ce,DOUBLEWI THTWODWORD INTREE (0x4b700000,0x00000000)},
{VT_exponent,22,0x3a87cf,DOUBLEWITHTWODWORD INTREE (0x4b800000,0x00000000)},
{VT_exponent,22,0x3a87d0,DOUBLEWITHTWODWORD INTREE (0x4b900000,0x00000000)},
{VT_exponent,22,0x3a87d1,DOUBLEWITHTWODWORD INTREE (0x4ba00000,0x00000000)},
{VT_exponent,22,0x3a87d2,DOUBLEWI THTWODWORD INTREE (0x4bb00000,0x00000000)},
{VT_exponent,22,0x3a87d3,DOUBLEWITHTWODWORD INTREE (0x4bc00000,0x00000000)},
{VT_exponent,22,0x3a87d4 , DOUBLEW I THTWODWORD INTREE (0x4bd00000 , 0x00000000)},
{VT_exponent,22,0x3a87d5,DOUBLEWI THTWODWORD INTREE (0x4be00000,0x00000000)},
{VT_exponent,22,0x3a87d6,DOUBLEWITHTWODWORD INTREE (0x4bf00000,0x00000000)},
{VT_exponent,22,0x3a87d7 ,DOUBLEWITHTWODWORD INTREE (0x4c000000,0x00000000)},
{VT_exponent,22,0x3a87d8,DOUBLEWI THTWODWORD INTREE (0x4c100000,0x00000000)},
{VT_exponent,22,0x3a87d9,DOUBLEWI THTWODWORD INTREE (0x4c200000,0x00000000)},
{VT_exponent,22,0x3a87da,DOUBLEWITHTWODWORD INTREE (0x4c300000,0x00000000)},
{VT_exponent,22,0x3a87db,DOUBLEWI THTWODWORD INTREE (0x4c400000,0x00000000)},
{VT_exponent,22,0x3a87dc,DOUBLEWI THTWODWORD INTREE (0x4c500000,0x00000000)},
{VT_exponent,22,0x3a87dd,DOUBLEWI THTWODWORD INTREE (0x4c600000,0x00000000)},
{VT_exponent,22,0x3a87de , DOUBLEW I THTWODWORD INTREE (0x4c700000,, 0x00000000)},
{VT_exponent,22,0x3a87d¥,DOUBLEWI THTWODWORD INTREE (0x4c800000,0x00000000)},
{VT_exponent,22,0x3a87e0,DOUBLEWITHTWODWORD INTREE (0x4c900000,0x00000000)},
{VT_exponent,22,0x3a87el,DOUBLEWITHTWODWORD INTREE (0x4ca00000,0x00000000)},
{VT_exponent,22,0x3a87e2,DOUBLEWI THTWODWORD INTREE (0x4cb00000,0x00000000)},
{VT_exponent,22,0x3a87e3,DOUBLEWI THTWODWORD INTREE (0x4cc00000,0x00000000)},
{VT_exponent,22,0x3a87e4,DOUBLEWITHTWODWORD INTREE (0x4cd00000,0x00000000)},
{VT_exponent,22,0x3a87e5,DOUBLEWI THTWODWORD INTREE (0x4ce00000,0x00000000)},
{VT_exponent,22,0x3a87e6,DOUBLEWI THTWODWORD INTREE (0x4cf00000,0x00000000)},
{VT_exponent,22,0x3a87e7,DOUBLEWITHTWODWORD INTREE (0x4d000000,0x00000000)},
{VT_exponent,22,0x3a87e8 , DOUBLEW I THTWODWORD INTREE (0x4d100000,0x00000000)},
{VT_exponent, 22 ,0x3a87e9, DOUBLEWI THTWODWORD I NTREE (0x4d200000 , 0x00000000) } ,
{VT_exponent,22,0x3a87ea, DOUBLEWI THTWODWORD INTREE (0x4d300000,0x00000000)},
{VT_exponent, 22 ,0x3a87eb, DOUBLEWI THTWODWORD I NTREE (0x4d400000 , 0x00000000) } ,
{VT_exponent,22,0x3a87ec,DOUBLEWI THTWODWORD INTREE (0x4d500000,0x00000000)},
{VT_exponent,22,0x3a87ed,DOUBLEWI THTWODWORD INTREE (0x4d600000,0x00000000)},
{VT_exponent,22,0x3a87ee,DOUBLEWITHTWODWORD INTREE (0x4d700000,0x00000000)},
{VT_exponent,22,0x3a87ef,DOUBLEWI THTWODWORD INTREE (0x4d800000,0x00000000)},
{VT_exponent,22,0x3a87f0,DOUBLEWITHTWODWORD INTREE (0x4d900000,0x00000000)},
{VT_exponent,22,0x3a87f1,DOUBLEWITHTWODWORD INTREE (0x4da00000,0x00000000)},
{VT_exponent,22,0x3a87F2, DOUBLEW I THTWODWORD INTREE (0x4db00000 , 0x00000000)},
{VT_exponent, 22,0x3a87F3, DOUBLEWI THTWODWORD I NTREE (0x4dc00000 , 0x00000000) } ,
{VT_exponent,22,0x3a87f4,DOUBLEWITHTWODWORD INTREE (0x4dd00000,0x00000000)},
{VT_exponent,22,0x3a87f5,DOUBLEWITHTWODWORD INTREE (0x4de00000,0x00000000)},
{VT_exponent,22,0x3a87f6,DOUBLEWI THTWODWORD INTREE (0x4df00000,0x00000000)},
{VT_exponent,22,0x3a87F7,DOUBLEWITHTWODWORD INTREE (0x4e000000,0x00000000)},
{VT_exponent,22,0x3a87f8,DOUBLEWITHTWODWORD INTREE (0x4e100000,0x00000000)},
{VT_exponent, 22 ,0x3a87F9, DOUBLEWI THTWODWORD I NTREE (0x4€200000 , 0x00000000) } ,
{VT_exponent,22,0x3a87fa,DOUBLEWITHTWODWORD INTREE (0x4e300000,0x00000000)},
{VT_exponent, 22,0x3a87fb , DOUBLEWI THTWODWORD INTREE (0x4e400000 , 0x00000000)} ,
{VT_exponent,22,0x3a87fc,DOUBLEWITHTWODWORD INTREE (0x4e500000,0x00000000)},
{VT_exponent, 22 ,0x3a87fd, DOUBLEWI THTWODWORD I NTREE (0x4€600000 , 0x00000000) } ,

280 © IS0 2008 — Al rights reserved

{VT_exponent,22,0x3a87fe,DOUBLEWITHTWODWORD INTREE (0x4e700000,0x00000000)},
{VT_exponent,22,0x3a87ff,DOUBLEWITHTWODWORD INTREE (0x4e800000 ,0x00000000)},
{VT_exponent,22,0x3a9000, DOUBLEWI THTWODWORD INTREE (0x4e€900000,0x00000000) },
{VT_exponent,22,0x3a9001,DOUBLEWITHTWODWORD INTREE (0x4ea00000,0x00000000)},
{VT_exponent,22,0x3a9002 ,DOUBLEWITHTWODWORD INTREE (0x4eb00000,0x00000000)},
{VT_exponent,22,0x3a9003,DOUBLEWITHTWODWORD INTREE (0x4ec00000 ,0x00000000)},
{VT_exponent,22,0x3a9004 ,DOUBLEWITHTWODWORD INTREE (0x4ed00000,0x00000000)},
{VT_exponent,22,0x3a9005,DOUBLEWITHTWODWORD INTREE (0x4ee00000,0x00000000)},
{VT_exponent,22,0x3a9006 ,DOUBLEWI THTWODWORD INTREE (0x4ef00000,0x00000000)},
{VT_exponent, 22 ,0x3a9007 , DOUBLEWI THTWODWORD INTREE (0x4F000000 ,0x00000000)},
{VT_exponent,22,0x3a9008 ,DOUBLEWITHTWODWORD INTREE (0x4¥100000,0x00000000)},
{VT_exponent,22,0x3a9009,DOUBLEWITHTWODWORD INTREE (0x4200000,0x00000000)},
{VT_exponent, 22 ,0x3a900a, DOUBLEWI THTWODWORD INTREE (0x4F300000 ,0x00000000)},
{VT_exponent,22,0x3a900b,DOUBLEWITHTWODWORD INTREE (0x4¥400000,0x00000000)},
{VT_exponent,22,0x3a900c , DOUBLEWITHTWODWORD INTREE (0x4¥500000,0x00000000)},
{VT_exponent,22,0x3a900d ,DOUBLEWITHTWODWORD INTREE (0x4f600000 ,0x00000000) },
{VT_exponent,22,0x3a900e ,DOUBLEWITHTWODWORD INTREE (0x4f700000,0x00000000)},
{VT_exponent,22,0x3a900f,DOUBLEWITHTWODWORD INTREE (0x4¥800000,0x00000000)},
{VT_exponent,22,0x3a9010 , DOUBLEWI THTWODWORD INTREE (0x4F900000 ,0x00000000)},
{VT_exponent,22,0x3a9011,DOUBLEWITHTWODWORD INTREE (0x4fa00000,0x00000000)},
{VT_exponent,22,0x3a9012,DOUBLEWITHTWODWORD INTREE (0x4fb00000,0x00000000)},
{VT_exponent,22,0x3a9013,DOUBLEWITHTWODWORD INTREE (0x4fc00000,0x00000000)},
{VT_exponent,22,0x3a9014 ,DOUBLEWITHTWODWORD INTREE (0x4fd00000 ,0x00000000)},
{VT_exponent,22,0x3a9015,DOUBLEWITHTWODWORD INTREE (0x4fe00000,0x00000000)},
{VT_exponent,22,0x3a9016 ,DOUBLEWITHTWODWORD INTREE (0x4ff00000,0x00000000)},
{VT_exponent,22,0x3a9017 ,DOUBLEWITHTWODWORD INTREE (0x50000000,0x00000000)},
{VT_exponent,22,0x3a9018,DOUBLEWITHTWODWORD INTREE (0x50100000,0x00000000)},
{VT_exponent,22,0x3a9019,DOUBLEWITHTWODWORD INTREE (0x50200000,0x00000000)},
{VT_exponent,22,0x3a901a,DOUBLEWI THTWODWORD INTREE (0x50300000,0x00000000)},
{VT_exponent, 22 ,0x3a901b, DOUBLEWI THTWODWORD INTREE (0x50400000 ,0x00000000)},
{VT_exponent,22,0x3a901c,DOUBLEWITHTWODWORD INTREE (0x50500000,0x00000000)},
{VT_exponent,22,0x3a901d ,DOUBLEWITHTWODWORD INTREE (0x50600000 ,0x00000000)},
{VT_exponent,22,0x3a901e ,DOUBLEWITHTWODWORD INTREE (0x50700000 ,0x00000000)},
{VT_exponent,22,0x3a901f,DOUBLEWITHTWODWORD INTREE (0x50800000,0x00000000)},
{VT_exponent,22,0x3a9020,DOUBLEWITHTWODWORD INTREE (0x50900000,0x00000000)},
{VT_exponent,22,0x3a9021,DOUBLEWITHTWODWORD INTREE (0x50a00000,0x00000000)},
{VT_exponent,22,0x3a9022 ,DOUBLEWI THTWODWORD INTREE (0x50b00000,0x00000000)},
{VT_exponent,22,0x3a9023,DOUBLEWITHTWODWORD INTREE (0x50c00000,0x00000000)},
{VT_exponent,22,0x3a9024 ,DOUBLEWITHTWODWORD INTREE (0x50d00000 ,0x00000000) },
{VT_exponent,22,0x3a9025 ,DOUBLEWITHTWODWORD INTREE (0x50e00000 ,0x00000000)},
{VT_exponent, 22,0x3a9026 , DOUBLEWI THTWODWORD I NTREE (0X50F00000 , 0x00000000) },
{VT_exponent,22,0x3a9027 ,DOUBLEWITHTWODWORD INTREE (0x51000000,0x00000000)},
{VT_exponent,22,0x3a9028 ,DOUBLEWITHTWODWORD INTREE (0x51100000,0x00000000)},
{VT_exponent,22,0x3a9029,DOUBLEWITHTWODWORD INTREE (0x51200000,0x00000000)},
{VT_exponent,22,0x3a902a,DOUBLEWI THTWODWORD INTREE (0x51300000,0x00000000)},
{VT_exponent,22,0x3a902b,DOUBLEWITHTWODWORD INTREE (0x51400000,0x00000000)},
{VT_exponent,22,0x3a902c ,DOUBLEWITHTWODWORD INTREE (0x51500000,0x00000000)},
{VT_exponent,22,0x3a902d ,DOUBLEWITHTWODWORD INTREE (0x51600000,0x00000000)},
{VT_exponent,22,0x3a902e ,DOUBLEWITHTWODWORD INTREE (0x51700000 ,0x00000000)},
{VT_exponent, 22 ,0x3a902F , DOUBLEWI THTWODWORD INTREE (0x51800000 ,0x00000000)},
{VT_exponent, 22,0x3a9030, DOUBLEWI THTWODWORD I NTREE(0x51900000 , 0x00000000) },
{VT_exponent,22,0x3a9031,DOUBLEWITHTWODWORD INTREE (0x51a00000,0x00000000)},
{VT_exponent,22,0x3a9032,DOUBLEWITHTWODWORD INTREE (0x51b00000 ,0x00000000)},
{VT_exponent,22,0x3a9033,DOUBLEWITHTWODWORD INTREE (0x51c00000,0x00000000)},
{VT_exponent,22,0x3a9034 ,DOUBLEWITHTWODWORD INTREE (0x51d00000,0x00000000)},
{VT_exponent,22,0x3a9035,DOUBLEWITHTWODWORD INTREE (0x51e00000,0x00000000)},
{VT_exponent, 22,0x3a9036 , DOUBLEWI THTWODWORD I NTREE (0x51F00000 , 0x00000000) },
{VT_exponent,22,0x3a9037 ,DOUBLEWITHTWODWORD INTREE (0x52000000,0x00000000)},
{VT_exponent,22,0x3a9038 ,DOUBLEWITHTWODWORD INTREE (0x52100000,0x00000000)},
{VT_exponent, 22 ,0x3a9039 , DOUBLEWI THTWODWORD INTREE (0x52200000 ,0x00000000)},
{VT_exponent, 22,0x3a903a, DOUBLEWI THTWODWORD I NTREE(0x52300000 , 0x00000000) },

© IS0 2008 — All rights reserved 281

{VT_exponent,22,0x3a903b,DOUBLEWI THTWODWORD INTREE (0x52400000,0x00000000)},
{VT_exponent,22,0x3a903c,DOUBLEWITHTWODWORD INTREE (0x52500000,0x00000000)},
{VT_exponent,22,0x3a903d , DOUBLEW I THTWODWORD INTREE (052600000, 0x00000000)},
{VT_exponent,22,0x3a903e,DOUBLEWI THTWODWORD INTREE (0x52700000,0x00000000)},
{VT_exponent,22,0x3a903f,DOUBLEWI THTWODWORD INTREE (0x52800000,0x00000000)},
{VT_exponent,22,0x3a9040 ,DOUBLEWITHTWODWORD INTREE (0x52900000,0x00000000)},
{VT_exponent,22,0x3a9041,DOUBLEWI THTWODWORD INTREE (0x52a00000,0x00000000)},
{VT_exponent,22,0x3a9042,DOUBLEWITHTWODWORD INTREE (0x52b00000,0x00000000)},
{VT_exponent,22,0x3a9043 , DOUBLEW I THTWODWORD INTREE (0x52c00000, 0x00000000)},
{VT_exponent,22,0x3a9044 , DOUBLEW I THTWODWORD INTREE (0x52d00000 , 0x00000000)},
{VT_exponent,22,0x3a9045,DOUBLEWI THTWODWORD INTREE (0x52e00000,0x00000000)},
{VT_exponent,22,0x3a9046 ,DOUBLEWITHTWODWORD INTREE (0x52f00000,0x00000000)},
{VT_exponent,22,0x3a9047 ,DOUBLEWITHTWODWORD INTREE (0x53000000,0x00000000)},
{VT_exponent,22,0x3a9048,DOUBLEWI THTWODWORD INTREE (0x53100000,0x00000000)},
{VT_exponent,22,0x3a9049,DOUBLEWITHTWODWORD INTREE (0x53200000,0x00000000)},
{VT_exponent,22,0x3a904a,DOUBLEWITHTWODWORD INTREE (0x53300000,0x00000000)},
{VT_exponent,22,0x3a904b,DOUBLEWI THTWODWORD INTREE (0x53400000,0x00000000)},
{VT_exponent,22,0x3a904c,DOUBLEWITHTWODWORD INTREE (0x53500000,0x00000000)},
{VT_exponent,22,0x3a904d, DOUBLEWI THTWODWORD INTREE (0x53600000,0x00000000) },
{VT_exponent,22,0x3a904e , DOUBLEW I THTWODWORD INTREE (053700000, 0x00000000)},
{VT_exponent,22,0x3a904f,DOUBLEWI THTWODWORD INTREE (0x53800000,0x00000000)},
{VT_exponent,22,0x3a9050 ,DOUBLEWITHTWODWORD INTREE (0x53900000,0x00000000)},
{VT_exponent,22,0x3a9051,DOUBLEWITHTWODWORD INTREE (0x53a00000,0x00000000)},
{VT_exponent,22,0x3a9052,DOUBLEWI THTWODWORD INTREE (0x53b00000,0x00000000)},
{VT_exponent,22,0x3a9053,DOUBLEWI THTWODWORD INTREE (0x53c00000,0x00000000)},
{VT_exponent,22,0x3a9054 ,DOUBLEWI THTWODWORD INTREE (0x53d00000,0x00000000)},
{VT_exponent,22,0x3a9055,DOUBLEWI THTWODWORD INTREE (0x53e00000,0x00000000)},
{VT_exponent,22,0x3a9056 ,DOUBLEWI THTWODWORD INTREE (0x53f00000,0x00000000)},
{VT_exponent,22,0x3a9057 , DOUBLEW I THTWODWORD INTREE (0x54000000, 0x00000000)},
{VT_exponent,22,0x3a9058 , DOUBLEW I THTWODWORD INTREE (0x54100000,0x00000000)},
{VT_exponent,22,0x3a9059 ,DOUBLEWI THTWODWORD INTREE (0x54200000,0x00000000)},
{VT_exponent,22,0x3a905a,DOUBLEWITHTWODWORD INTREE (0x54300000,0x00000000)},
{VT_exponent, 22, 0x3a905b , DOUBLEWI THTWODWORD I NTREE (0x54400000 , 0x00000000) },
{VT_exponent,22,0x3a905c ,DOUBLEWI THTWODWORD INTREE (0x54500000,0x00000000)},
{VT_exponent,22,0x3a905d, DOUBLEWI THTWODWORD INTREE (0x54600000,0x00000000)},
{VT_exponent,22,0x3a905e ,DOUBLEWI THTWODWORD INTREE (0x54700000,0x00000000)},
{VT_exponent,22,0x3a905f,DOUBLEWI THTWODWORD INTREE (0x54800000,0x00000000)},
{VT_exponent,22,0x3a9060 ,DOUBLEWITHTWODWORD INTREE (0x54900000,0x00000000)},
{VT_exponent,22,0x3a9061,DOUBLEWITHTWODWORD INTREE (0x54a00000,0x00000000)},
{VT_exponent, 22 ,0x3a9062 , DOUBLEW I THTWODWORD INTREE (0x54b00000 , 0x00000000)},
{VT_exponent, 22,,0x3a9063 , DOUBLEWI THTWODWORD INTREE (0x54c00000 , 0x00000000)} ,
{VT_exponent,22,0x3a9064 ,DOUBLEWITHTWODWORD INTREE (0x54d00000,0x00000000)},
{VT_exponent,22,0x3a9065 ,DOUBLEWITHTWODWORD INTREE (0x54e00000,0x00000000)},
{VT_exponent,22,0x3a9066 ,DOUBLEWI THTWODWORD INTREE (0x54f00000,0x00000000)},
{VT_exponent,22,0x3a9067 ,DOUBLEWITHTWODWORD INTREE (0x55000000,0x00000000)},
{VT_exponent,22,0x3a9068 ,DOUBLEWITHTWODWORD INTREE (0x55100000,0x00000000)},
{VT_exponent,22,0x3a9069 ,DOUBLEWI THTWODWORD INTREE (0x55200000,0x00000000)},
{VT_exponent,22,0x3a906a,DOUBLEWI THTWODWORD INTREE (0x55300000,0x00000000)},
{VT_exponent,22,0x3a906b ,DOUBLEWITHTWODWORD INTREE (0x55400000,0x00000000)},
{VT_exponent, 22 ,0x3a906¢ , DOUBLEW I THTWODWORD INTREE (055500000, 0x00000000)},
{VT_exponent, 22,,0x3a906d , DOUBLEWI THTWODWORD INTREE(0x55600000 , 0x00000000)} ,
{VT_exponent,22,0x3a906e ,DOUBLEWITHTWODWORD INTREE (0x55700000,0x00000000)},
{VT_exponent,22,0x3a906f,DOUBLEWITHTWODWORD INTREE (0x55800000,0x00000000)},
{VT_exponent,22,0x3a9070,DOUBLEWI THTWODWORD INTREE (0x55900000,0x00000000)},
{VT_exponent,22,0x3a9071,DOUBLEWITHTWODWORD INTREE (0x55a00000,0x00000000)},
{VT_exponent,22,0x3a9072,DOUBLEWITHTWODWORD INTREE (0x55b00000,0x00000000)},
{VT_exponent, 22,0x3a9073 , DOUBLEWI THTWODWORD INTREE(0x55c00000 , 0x00000000)} ,
{VT_exponent,22,0x3a9074 ,DOUBLEWI THTWODWORD INTREE (0x55d00000,0x00000000)},
{VT_exponent,22,0x3a9075,DOUBLEWITHTWODWORD INTREE (0x55e00000,0x00000000)},
{VT_exponent,22,0x3a9076 ,DOUBLEWI THTWODWORD INTREE (0x55f00000,0x00000000)},
{VT_exponent, 22,0x3a9077 , DOUBLEWI THTWODWORD INTREE(0x56000000 , 0x00000000)} ,

282 © 1SO 2008 — All rights reserved

{VT_exponent,22,0x3a9078,DOUBLEWITHTWODWORD INTREE (0x56100000,0x00000000)},
{VT_exponent,22,0x3a9079,DOUBLEWI THTWODWORD INTREE (0x56200000,0x00000000) } ,
{VT_exponent,22,0x3a907a, DOUBLEWI THTWODWORD INTREE (0x56300000,0x00000000) },
{VT_exponent,22,0x3a907b,DOUBLEWITHTWODWORD INTREE (0x56400000,0x00000000)},
{VT_exponent,22,0x3a907c,DOUBLEWITHTWODWORD INTREE (0x56500000,0x00000000)},
{VT_exponent,22,0x3a907d,DOUBLEWI THTWODWORD INTREE (0x56600000,0x00000000) } ,
{VT_exponent,22,0x3a907e,DOUBLEWI THTWODWORD INTREE (0x56700000,0x00000000)},
{VT_exponent,22,0x3a907F,DOUBLEWITHTWODWORD INTREE (0x56800000,0x00000000)},
{VT_exponent,22,0x3a9080,DOUBLEWI THTWODWORD INTREE (0x56900000,0x00000000) },
{VT_exponent, 22 ,0x3a9081 , DOUBLEWI THTWODWORD INTREE (0x56a00000 ,0x00000000)},
{VT_exponent,22,0x3a9082 ,DOUBLEWITHTWODWORD INTREE (0x56b00000,0x00000000)},
{VT_exponent,22,0x3a9083, DOUBLEWITHTWODWORD INTREE(0x56c00000 ,0x00000000)},
{VT_exponent,22,0x3a9084 ,DOUBLEWI THTWODWORD INTREE (0x56d00000,,0x00000000) },
{VT_exponent,22,0x3a9085,DOUBLEWITHTWODWORD INTREE (0x56e00000,0x00000000)},
{VT_exponent,22,0x3a9086 ,DOUBLEWITHTWODWORD INTREE (0x56 00000 ,0x00000000)},
{VT_exponent,22,0x3a9087 ,DOUBLEWI THTWODWORD INTREE (0x57000000,0x00000000) },
{VT_exponent,22,0x3a9088,DOUBLEWITHTWODWORD INTREE (0x57100000,0x00000000)},
{VT_exponent,22,0x3a9089,DOUBLEWITHTWODWORD INTREE (0x57200000,0x00000000)},
{VT_exponent, 22 ,0x3a908a, DOUBLEWI THTWODWORD INTREE (0x57300000 ,0x00000000) } ,
{VT_exponent, 22 ,0x3a908b , DOUBLEWI THTWODWORD INTREE (0x57400000 ,0x00000000)},
{VT_exponent,22,0x3a908c ,DOUBLEWITHTWODWORD INTREE (0x57500000,0x00000000)},
{VT_exponent,22,0x3a908d ,DOUBLEWI THTWODWORD INTREE (0x57600000,0x00000000) },
{VT_exponent, 22 ,0x3a908e , DOUBLEWI THTWODWORD INTREE (0x57700000 ,0x00000000) } ,
{VT_exponent,22,0x3a908F,DOUBLEWITHTWODWORD INTREE (0x57800000,0x00000000)},
{VT_exponent,22,0x3a9090,DOUBLEWITHTWODWORD INTREE (0x57900000,0x00000000)},
{VT_exponent,22,0x3a9091,DOUBLEWITHTWODWORD INTREE (0x57a00000,0x00000000)},
{VT_exponent,22,0x3a9092 ,DOUBLEWITHTWODWORD INTREE (0x57b00000,0x00000000)},
{VT_exponent,22,0x3a9093,DOUBLEWITHTWODWORD INTREE (0x57c00000,0x00000000)},
{VT_exponent, 22 ,0x3a9094 , DOUBLEWI THTWODWORD INTREE (0x57d00000 , 0x00000000) } ,
{VT_exponent,22,0x3a9095 ,DOUBLEWITHTWODWORD INTREE (0x57e00000,0x00000000)},
{VT_exponent,22,0x3a9096 ,DOUBLEWITHTWODWORD INTREE (0x57¥00000,0x00000000)},
{VT_exponent,22,0x3a9097 ,DOUBLEWI THTWODWORD INTREE (0x58000000,0x00000000) },
{VT_exponent,22,0x3a9098 ,DOUBLEWITHTWODWORD INTREE (0x58100000 ,0x00000000)},
{VT_exponent,22,0x3a9099,DOUBLEWITHTWODWORD INTREE (0x58200000,0x00000000)},
{VT_exponent,22,0x3a909a,DOUBLEWITHTWODWORD INTREE (0x58300000,0x00000000)},
{VT_exponent,22,0x3a909b,DOUBLEWITHTWODWORD INTREE (0x58400000,0x00000000)},
{VT_exponent,22,0x3a909c ,DOUBLEWITHTWODWORD INTREE (0x58500000,0x00000000)},
{VT_exponent,22,0x3a909d , DOUBLEWITHTWODWORD INTREE (0x58600000,0x00000000)},
{VT_exponent,22,0x3a909¢e ,DOUBLEWITHTWODWORD INTREE (0x58700000 ,0x00000000) },
{VT_exponent,22,0x3a909f,DOUBLEWITHTWODWORD INTREE (0x58800000 ,0x00000000) },
{VT_exponent,22,0x3a90a0, DOUBLEWITHTWODWORD INTREE(0x58900000 ,0x00000000)},
{VT_exponent,22,0x3a90al,DOUBLEWITHTWODWORD INTREE (0x58a00000,0x00000000)},
{VT_exponent,22,0x3a90a2 ,DOUBLEWITHTWODWORD INTREE (0x58b00000 ,0x00000000) },
{VT_exponent,22,0x3a90a3,DOUBLEWITHTWODWORD INTREE (0x58c00000,0x00000000)},
{VT_exponent,22,0x3a90a4 ,DOUBLEWITHTWODWORD INTREE (0x58d00000,0x00000000)},
{VT_exponent,22,0x3a90a5,DOUBLEWITHTWODWORD INTREE (0x58e00000,0x00000000)},
{VT_exponent,22,0x3a90a6 ,DOUBLEWI THTWODWORD INTREE (0x58¥00000,0x00000000)},
{VT_exponent,22,0x3a90a7 ,DOUBLEWITHTWODWORD INTREE (0x59000000,0x00000000)},
{VT_exponent,22,0x3a90a8 ,DOUBLEWITHTWODWORD INTREE (0x59100000 ,0x00000000)},
{VT_exponent,22,0x3a90a9 ,DOUBLEWITHTWODWORD INTREE (0x59200000 ,0x00000000)},
{VT_exponent,22,0x3a90aa, DOUBLEWI THTWODWORD INTREE (0x59300000 ,0x00000000)},
{VT_exponent,22,0x3a90ab,DOUBLEWITHTWODWORD INTREE (0x59400000,0x00000000)},
{VT_exponent,22,0x3a90ac , DOUBLEWITHTWODWORD INTREE (0x59500000 ,0x00000000) },
{VT_exponent,22,0x3a90ad , DOUBLEWITHTWODWORD INTREE (0x59600000,0x00000000)},
{VT_exponent,22,0x3a90ae ,DOUBLEWITHTWODWORD INTREE (0x59700000,0x00000000)},
{VT_exponent,22,0x3a90af,DOUBLEWITHTWODWORD INTREE (0x59800000,0x00000000)},
{VT_exponent,22,0x3a90b0, DOUBLEWI THTWODWORD INTREE(0x59900000 ,0x00000000)},
{VT_exponent,22,0x3a90b1,DOUBLEWITHTWODWORD INTREE (0x59a00000,0x00000000)},
{VT_exponent,22,0x3a90b2 ,DOUBLEWITHTWODWORD INTREE (0x59b00000 ,0x00000000) },
{VT_exponent,22,0x3a90b3,DOUBLEWITHTWODWORD INTREE (0x59c00000 ,0x00000000)},
{VT_exponent,22,0x3a90b4 , DOUBLEWI THTWODWORD INTREE(0x59d00000 ,0x00000000)},

© IS0 2008 — Al rights reserved 283

{VT_exponent,22,0x3a90b5,DOUBLEWI THTWODWORD INTREE (0x59e00000,0x00000000)},
{VT_exponent,22,0x3a90b6 ,DOUBLEWITHTWODWORD INTREE (0x59f00000,0x00000000)},
{VT_exponent,22,0x3a90b7 ,DOUBLEWI THTWODWORD INTREE (0x5a000000,0x00000000) },
{VT_exponent,22,0x3a90b8,DOUBLEWI THTWODWORD INTREE (0x5a100000,0x00000000)},
{VT_exponent,22,0x3a90b9,DOUBLEWI THTWODWORD INTREE (0x5a200000,0x00000000)},
{VT_exponent,22,0x3a90ba,DOUBLEWITHTWODWORD INTREE (0x5a300000,0x00000000)},
{VT_exponent,22,0x3a90bb ,DOUBLEWITHTWODWORD INTREE (0x5a400000,0x00000000)},
{VT_exponent,22,0x3a90bc ,DOUBLEWITHTWODWORD INTREE (0x5a500000,0x00000000)},
{VT_exponent,22,0x3a90bd , DOUBLEWI THTWODWORD INTREE (0x5a600000,0x00000000) },
{VT_exponent, 22 ,0x3a90be , DOUBLEW I THTWODWORD INTREE (0x5a700000, 0x00000000)},
{VT_exponent,22,0x3a90bf,DOUBLEWITHTWODWORD INTREE (0x5a800000,0x00000000)},
{VT_exponent,22,0x3a90c0,DOUBLEWITHTWODWORD INTREE (0x5a900000,0x00000000)},
{VT_exponent,22,0x3a90c1,DOUBLEWITHTWODWORD INTREE (0x52a00000,0x00000000)},
{VT_exponent,22,0x3a90c2,DOUBLEWITHTWODWORD INTREE (0x5ab00000,0x00000000)},
{VT_exponent,22,0x3a90c3,DOUBLEWI THTWODWORD INTREE (0x5ac00000,0x00000000)},
{VT_exponent,22,0x3a90c4 ,DOUBLEWITHTWODWORD INTREE (0x5ad00000 ,0x00000000)},
{VT_exponent,22,0x3a90c5,DOUBLEWI THTWODWORD INTREE (0x5ae00000,0x00000000)},
{VT_exponent,22,0x3a90c6 ,DOUBLEWI THTWODWORD INTREE (0x5af00000,0x00000000)},
{VT_exponent,22,0x3a90c7 ,DOUBLEWI THTWODWORD INTREE (0x5b000000,0x00000000) },
{VT_exponent,22,0x3a90c8 , DOUBLEW I THTWODWORD INTREE (0x5b100000, 0x00000000)},
{VT_exponent,22,0x3a90c9,DOUBLEWI THTWODWORD INTREE (0x5b200000,0x00000000)},
{VT_exponent,22,0x3a90ca, DOUBLEWITHTWODWORD INTREE (0x5b300000,0x00000000)},
{VT_exponent,22,0x3a90cb,DOUBLEWI THTWODWORD INTREE (0x5b400000,0x00000000) },
{VT_exponent,22,0x3a90cc,DOUBLEWITHTWODWORD INTREE (0x5b500000,0x00000000)},
{VT_exponent,22,0x3a90cd,DOUBLEWITHTWODWORD INTREE (0x5b600000,0x00000000)},
{VT_exponent,22,0x3a90ce ,DOUBLEWITHTWODWORD INTREE (0x5b700000,0x00000000)},
{VT_exponent,22,0x3a90cf,DOUBLEWITHTWODWORD INTREE (0x5b800000,0x00000000)},
{VT_exponent,22,0x3a90d0,DOUBLEWITHTWODWORD INTREE (0x5b900000,0x00000000)},
{VT_exponent,22,0x3a90d1,DOUBLEWITHTWODWORD INTREE (0x5ba00000,0x00000000)},
{VT_exponent, 22 ,0x3a90d2 , DOUBLEW I THTWODWORD INTREE (0x5bb00000 , 0x00000000)},
{VT_exponent,22,0x3a90d3,DOUBLEWI THTWODWORD INTREE (0x5bc00000,0x00000000)},
{VT_exponent,22,0x3a90d4 ,DOUBLEWITHTWODWORD INTREE (0x5bd00000 ,0x00000000)},
{VT_exponent,22,0x3a90d5,DOUBLEWITHTWODWORD INTREE (0x5be00000,0x00000000)},
{VT_exponent,22,0x3a90d6 ,DOUBLEWI THTWODWORD INTREE (0x5bf00000,0x00000000)},
{VT_exponent,22,0x3a90d7 ,DOUBLEWITHTWODWORD INTREE (0x5c000000,0x00000000)},
{VT_exponent,22,0x3a90d8,DOUBLEWITHTWODWORD INTREE (0x5c100000,0x00000000)},
{VT_exponent,22,0x3a90d9,DOUBLEWITHTWODWORD INTREE (0x5¢c200000,0x00000000)},
{VT_exponent,22,0x3a90da, DOUBLEWITHTWODWORD INTREE (0x5c300000,0x00000000)},
{VT_exponent,22,0x3a90db ,DOUBLEWITHTWODWORD INTREE (0x5c400000,0x00000000)},
{VT_exponent, 22 ,0x3a90dc , DOUBLEW I THTWODWORD INTREE (0x5¢500000, 0x00000000)},
{VT_exponent, 22,,0x3a90dd , DOUBLEWI THTWODWORD INTREE(0x5c600000 , 0x00000000)} ,
{VT_exponent,22,0x3a90de ,DOUBLEWI THTWODWORD INTREE (0x5c700000,0x00000000)},
{VT_exponent,22,0x3a90df,DOUBLEWITHTWODWORD INTREE (0x5c800000,0x00000000)},
{VT_exponent,22,0x3a90e0,DOUBLEWI THTWODWORD INTREE (0x5c900000,0x00000000)},
{VT_exponent,22,0x3a90el,DOUBLEWITHTWODWORD INTREE (0x5ca00000,0x00000000)},
{VT_exponent,22,0x3a90e2,DOUBLEWITHTWODWORD INTREE (0x5cb00000,0x00000000)},
{VT_exponent,22,0x3a90e3,DOUBLEWI THTWODWORD INTREE (0x5cc00000,0x00000000)},
{VT_exponent,22,0x3a90e4 ,DOUBLEWI THTWODWORD INTREE (0x5cd00000,0x00000000)},
{VT_exponent,22,0x3a90e5,DOUBLEWITHTWODWORD INTREE (0x5ce00000,0x00000000)},
{VT_exponent,22,0x3a90e6 ,DOUBLEWITHTWODWORD INTREE (0x5cf00000,0x00000000)},
{VT_exponent, 22,,0x3a90e7 , DOUBLEWI THTWODWORD INTREE(0x5d000000 , 0x00000000)} ,
{VT_exponent,22,0x3a90e8,DOUBLEWITHTWODWORD INTREE (0x5d100000,0x00000000)},
{VT_exponent,22,0x3a90e9,DOUBLEWITHTWODWORD INTREE (0x5d200000,0x00000000)},
{VT_exponent,22,0x3a90ea, DOUBLEWI THTWODWORD INTREE (0x5d300000,0x00000000)},
{VT_exponent,22,0x3a90eb,DOUBLEWITHTWODWORD INTREE (0x5d400000,0x00000000)},
{VT_exponent,22,0x3a90ec, DOUBLEWITHTWODWORD INTREE (0x5d500000,0x00000000)},
{VT_exponent, 22,,0x3a90ed , DOUBLEWI THTWODWORD INTREE(0x5d600000 , 0x00000000)} ,
{VT_exponent,22,0x3a90ee , DOUBLEWI THTWODWORD INTREE (0x5d700000,0x00000000)},
{VT_exponent,22,0x3a90ef,DOUBLEWITHTWODWORD INTREE (0x5d800000,0x00000000)},
{VT_exponent,22,0x3a90f0,DOUBLEWITHTWODWORD INTREE(0x5d900000,0x00000000)},
{VT_exponent, 22,0x3a90F1 , DOUBLEWI THTWODWORD INTREE(0x5d200000 , 0x00000000)} ,

284 © 1SO 2008 — All rights reserved

{VT_exponent,22,0x3a90f2,DOUBLEWITHTWODWORD INTREE (0x5db00000,0x00000000)},
{VT_exponent,22,0x3a90f3,DOUBLEWI THTWODWORD INTREE (0x5dc00000,0x00000000)} ,
{VT_exponent,22,0x3a90f4 ,DOUBLEWI THTWODWORD INTREE (0x5dd00000 ,,0x00000000) },
{VT_exponent,22,0x3a90f5,DOUBLEWI THTWODWORD INTREE (0x5de00000,0x00000000)},
{VT_exponent,22,0x3a90f6 ,DOUBLEWITHTWODWORD INTREE (0x5df00000,0x00000000)},
{VT_exponent,22,0x3a90f7,DOUBLEWI THTWODWORD INTREE (0x5e000000,0x00000000) } ,
{VT_exponent,22,0x3a90f8,DOUBLEWITHTWODWORD INTREE (0x5e100000,0x00000000)},
{VT_exponent,22,0x3a90f9,DOUBLEWITHTWODWORD INTREE (0x5e€200000,0x00000000)},
{VT_exponent,22,0x3a90fa, DOUBLEWI THTWODWORD INTREE (0x5e300000,0x00000000)},
{VT_exponent, 22 ,0x3a90fb , DOUBLEWI THTWODWORD INTREE (0x5e400000 ,0x00000000)} ,
{VT_exponent,22,0x3a90fc,DOUBLEWITHTWODWORD INTREE (0x5e500000,0x00000000)},
{VT_exponent,22,0x3a90fd,DOUBLEWI THTWODWORD INTREE (0x5e600000,0x00000000) },
{VT_exponent,22,0x3a90fe, DOUBLEWI THTWODWORD INTREE (0x5e700000,0x00000000) },
{VT_exponent,22,0x3a90ff,DOUBLEWI THTWODWORD INTREE (0x5e800000,0x00000000)},
{VT_exponent,22,0x3a9100,DOUBLEWITHTWODWORD INTREE (0x5€900000,0x00000000)},
{VT_exponent,22,0x3a9101,DOUBLEWITHTWODWORD INTREE (0x5ea00000,0x00000000)},
{VT_exponent,22,0x3a9102,DOUBLEWITHTWODWORD INTREE (0x5eb00000,0x00000000)},
{VT_exponent,22,0x3a9103,DOUBLEWITHTWODWORD INTREE (0x5ec00000,0x00000000)},
{VT_exponent,22,0x3a9104 ,DOUBLEWITHTWODWORD INTREE (0x5ed00000 ,0x00000000) },
{VT_exponent,22,0x3a9105,DOUBLEWITHTWODWORD INTREE (0x5ee00000 ,0x00000000)},
{VT_exponent,22,0x3a9106 ,DOUBLEWITHTWODWORD INTREE (0x5ef00000,0x00000000)},
{VT_exponent,22,0x3a9107 ,DOUBLEWITHTWODWORD INTREE (0x5f000000 ,0x00000000)},
{VT_exponent, 22 ,0x3a9108 , DOUBLEWI THTWODWORD INTREE (0x5F100000 ,0x00000000) } ,
{VT_exponent,22,0x3a9109,DOUBLEWITHTWODWORD INTREE (0x5200000,0x00000000)},
{VT_exponent,22,0x3a910a,DOUBLEWITHTWODWORD INTREE (0x5¥300000,0x00000000)},
{VT_exponent,22,0x3a910b,DOUBLEWITHTWODWORD INTREE (0x5¥400000,0x00000000)},
{VT_exponent,22,0x3a910c ,DOUBLEWITHTWODWORD INTREE (0x5f500000,0x00000000)},
{VT_exponent,22,0x3a910d,DOUBLEWITHTWODWORD INTREE (0x5¥600000,0x00000000)},
{VT_exponent,22,0x3a910e,DOUBLEWI THTWODWORD INTREE (0Xx5f700000,0x00000000)},
{VT_exponent,22,0x3a910f,DOUBLEWITHTWODWORD INTREE (0x5f800000 ,0x00000000)},
{VT_exponent,22,0x3a9110,DOUBLEWITHTWODWORD INTREE (0x5900000,0x00000000)},
{VT_exponent,22,0x3a9111,DOUBLEWITHTWODWORD INTREE (0x5fa00000 ,0x00000000)},
{VT_exponent,22,0x3a9112,DOUBLEWITHTWODWORD INTREE (0x5fb00000 ,0x00000000) },
{VT_exponent,22,0x3a9113,DOUBLEWITHTWODWORD INTREE (0x5fc00000,0x00000000)},
{VT_exponent,22,0x3a9114 ,DOUBLEWITHTWODWORD INTREE (0x5fd00000,0x00000000)},
{VT_exponent,22,0x3a9115,DOUBLEWITHTWODWORD INTREE (0x5fe00000,0x00000000)},
{VT_exponent,22,0x3a9116 ,DOUBLEWITHTWODWORD INTREE (Ox5ff00000,0x00000000)},
{VT_exponent,22,0x3a9117 ,DOUBLEWITHTWODWORD INTREE (0x60000000,0x00000000)},
{VT_exponent,22,0x3a9118 ,DOUBLEWITHTWODWORD INTREE (0x60100000 ,0x00000000)},
{VT_exponent,22,0x3a9119,DOUBLEWITHTWODWORD INTREE(0x60200000 ,0x00000000)},
{VT_exponent,22,0x3a911a,DOUBLEWITHTWODWORD INTREE (0x60300000,0x00000000)},
{VT_exponent,22,0x3a911b,DOUBLEWITHTWODWORD INTREE (0x60400000,0x00000000)},
{VT_exponent,22,0x3a911c,DOUBLEWITHTWODWORD INTREE (0x60500000 ,0x00000000)},
{VT_exponent,22,0x3a911d,DOUBLEWITHTWODWORD INTREE (0x60600000,0x00000000)},
{VT_exponent,22,0x3a911le,DOUBLEWITHTWODWORD INTREE(0x60700000,0x00000000)},
{VT_exponent,22,0x3a911f,DOUBLEWITHTWODWORD INTREE(0x60800000,0x00000000)},
{VT_exponent,22,0x3a9120,DOUBLEWI THTWODWORD INTREE (0x60900000,0x00000000)},
{VT_exponent,22,0x3a9121,DOUBLEWITHTWODWORD INTREE (0x60a00000,0x00000000)},
{VT_exponent,22,0x3a9122 ,DOUBLEWITHTWODWORD INTREE (0x60b00000 ,0x00000000)},
{VT_exponent,22,0x3a9123,DOUBLEWITHTWODWORD INTREE (0x60c00000 ,0x00000000)},
{VT_exponent,22,0x3a9124 ,DOUBLEWITHTWODWORD INTREE (0x60d00000,0x00000000) },
{VT_exponent,22,0x3a9125,DOUBLEWITHTWODWORD INTREE (0x60e00000,0x00000000)},
{VT_exponent,22,0x3a9126 ,DOUBLEWITHTWODWORD INTREE (0x60f00000 ,0x00000000)},
{VT_exponent,22,0x3a9127 ,DOUBLEWITHTWODWORD INTREE (0x61000000,0x00000000)},
{VT_exponent,22,0x3a9128,DOUBLEWITHTWODWORD INTREE (0x61100000,0x00000000)},
{VT_exponent,22,0x3a9129,DOUBLEWITHTWODWORD INTREE (0x61200000,0x00000000)},
{VT_exponent,22,0x3a912a,DOUBLEWITHTWODWORD INTREE (0x61300000,0x00000000)},
{VT_exponent,22,0x3a912b,DOUBLEWITHTWODWORD INTREE (0x61400000,0x00000000)},
{VT_exponent,22,0x3a912c,DOUBLEWITHTWODWORD INTREE (0x61500000 ,0x00000000)},
{VT_exponent,22,0x3a912d ,DOUBLEWITHTWODWORD INTREE (0x61600000 ,0x00000000)},
{VT_exponent,22,0x3a912e,DOUBLEWITHTWODWORD INTREE (0x61700000,0x00000000)},

© IS0 2008 — Al rights reserved 285

{VT_exponent,22,0x3a912F,DOUBLEWI THTWODWORD INTREE (0x61800000,0x00000000)},
{VT_exponent,22,0x3a9130,DOUBLEWITHTWODWORD INTREE (0x61900000,0x00000000)},
{VT_exponent,22,0x3a9131,DOUBLEWITHTWODWORD INTREE(0x61a00000,0x00000000)},
{VT_exponent,22,0x3a9132,DOUBLEWITHTWODWORD INTREE (0x61b00000,0x00000000)},
{VT_exponent,22,0x3a9133,DOUBLEWITHTWODWORD INTREE (0x61c00000,0x00000000)},
{VT_exponent,22,0x3a9134 ,DOUBLEWITHTWODWORD INTREE (0x61d00000,0x00000000)},
{VT_exponent,22,0x3a9135,DOUBLEWI THTWODWORD INTREE (0x61e00000,0x00000000)},
{VT_exponent,22,0x3a9136,DOUBLEWITHTWODWORD INTREE (0x61f00000,0x00000000)},
{VT_exponent,22,0x3a9137,DOUBLEWI THTWODWORD INTREE (0x62000000,0x00000000)},
{VT_exponent, 22 ,0x3a9138 , DOUBLEWI THTWODWORD INTREE (0x62100000 ,0x00000000) } ,
{VT_exponent,22,0x3a9139,DOUBLEWI THTWODWORD INTREE (0x62200000,0x00000000)},
{VT_exponent,22,0x3a913a,DOUBLEWITHTWODWORD INTREE (0x62300000,0x00000000)},
{VT_exponent, 22 ,0x3a913b , DOUBLEWI THTWODWORD INTREE (0x62400000 ,0x00000000) } ,
{VT_exponent,22,0x3a913c,DOUBLEWITHTWODWORD INTREE (0x62500000,0x00000000)},
{VT_exponent,22,0x3a913d,DOUBLEWITHTWODWORD INTREE (0x62600000,0x00000000)},
{VT_exponent,22,0x3a913e,DOUBLEWITHTWODWORD INTREE (0x62700000,0x00000000)},
{VT_exponent,22,0x3a913f,DOUBLEWI THTWODWORD INTREE (0x62800000,0x00000000)},
{VT_exponent,22,0x3a9140,DOUBLEWITHTWODWORD INTREE (0x62900000,0x00000000)},
{VT_exponent,22,0x3a9141,DOUBLEWITHTWODWORD INTREE (0x62a00000,0x00000000)},
{VT_exponent, 22 ,0x3a9142 , DOUBLEWI THTWODWORD INTREE (0x62b00000 , 0x00000000) } ,
{VT_exponent,22,0x3a9143,DOUBLEWI THTWODWORD INTREE (0x62c00000,0x00000000)},
{VT_exponent, 22 ,0x3a9144 , DOUBLEWI THTWODWORD INTREE (0x62d00000 , 0x00000000) },
{VT_exponent,22,0x3a9145,DOUBLEWITHTWODWORD INTREE (0x62e00000,0x00000000)},
{VT_exponent,22,0x3a9146,DOUBLEWI THTWODWORD INTREE (0x62¥00000,0x00000000)},
{VT_exponent,22,0x3a9147 ,DOUBLEWITHTWODWORD INTREE (0x63000000,0x00000000)},
{VT_exponent,22,0x3a9148,DOUBLEWITHTWODWORD INTREE (0x63100000,0x00000000)},
{VT_exponent,22,0x3a9149,DOUBLEWI THTWODWORD INTREE (0x63200000,0x00000000)},
{VT_exponent,22,0x3a914a,DOUBLEWITHTWODWORD INTREE (0x63300000,0x00000000)},
{VT_exponent,22,0x3a914b,DOUBLEWITHTWODWORD INTREE (0x63400000,0x00000000)},
{VT_exponent, 22 ,0x3a914c , DOUBLEWI THTWODWORD INTREE (0x63500000 ,0x00000000) } ,
{VT_exponent,22,0x3a914d,DOUBLEWI THTWODWORD INTREE (0x63600000,0x00000000)},
{VT_exponent,22,0x3a914e ,DOUBLEWITHTWODWORD INTREE (0x63700000,0x00000000)},
{VT_exponent,22,0x3a914f,DOUBLEWITHTWODWORD INTREE (0x63800000,0x00000000)},
{VT_exponent,22,0x3a9150,DOUBLEWI THTWODWORD INTREE (0x63900000,0x00000000)},
{VT_exponent,22,0x3a9151,DOUBLEWI THTWODWORD INTREE (0x63a00000,0x00000000)},
{VT_exponent,22,0x3a9152,DOUBLEWITHTWODWORD INTREE (0x63b00000,0x00000000)},
{VT_exponent,22,0x3a9153,DOUBLEWI THTWODWORD INTREE (0x63c00000,0x00000000)},
{VT_exponent,22,0x3a9154 ,DOUBLEWI THTWODWORD INTREE (0x63d00000 ,0x00000000)},
{VT_exponent,22,0x3a9155,DOUBLEWITHTWODWORD INTREE (0x63e00000,0x00000000)},
{VT_exponent, 22 ,0x3a9156 , DOUBLEWI THTWODWORD INTREE (0x63F00000 ,0x00000000) } ,
{VT_exponent,22,0x3a9157 ,DOUBLEWI THTWODWORD INTREE (0x64000000,0x00000000) },
{VT_exponent,22,0x3a9158,DOUBLEWITHTWODWORD INTREE (0x64100000,0x00000000)},
{VT_exponent,22,0x3a9159,DOUBLEWITHTWODWORD INTREE (0x64200000,0x00000000)},
{VT_exponent,22,0x3a915a,DOUBLEWI THTWODWORD INTREE (0x64300000,0x00000000)},
{VT_exponent,22,0x3a915b,DOUBLEWITHTWODWORD INTREE (0x64400000,0x00000000)},
{VT_exponent,22,0x3a915c,DOUBLEWITHTWODWORD INTREE (0x64500000,0x00000000)},
{VT_exponent,22,0x3a915d,DOUBLEWI THTWODWORD INTREE (0x64600000,0x00000000)},
{VT_exponent,22,0x3a915e,DOUBLEWI THTWODWORD INTREE (0x64700000,0x00000000)},
{VT_exponent,22,0x3a915f,DOUBLEWITHTWODWORD INTREE (0x64800000,0x00000000)},
{VT_exponent, 22 ,0x3a9160 , DOUBLEWI THTWODWORD INTREE (0x64900000 ,0x00000000) } ,
{VT_exponent,22,0x3a9161,DOUBLEWITHTWODWORD INTREE (0x64a00000,0x00000000)},
{VT_exponent,22,0x3a9162,DOUBLEWITHTWODWORD INTREE (0x64b00000,0x00000000)},
{VT_exponent,22,0x3a9163,DOUBLEWITHTWODWORD INTREE (0x64c00000,0x00000000)},
{VT_exponent,22,0x3a9164 ,DOUBLEWITHTWODWORD INTREE (0x64d00000,0x00000000)},
{VT_exponent,22,0x3a9165,DOUBLEWI THTWODWORD INTREE (0x64e00000,0x00000000)},
{VT_exponent,22,0x3a9166,DOUBLEWITHTWODWORD INTREE (0x64f00000,0x00000000)},
{VT_exponent,22,0x3a9167 ,DOUBLEWI THTWODWORD INTREE (0x65000000,0x00000000) },
{VT_exponent,22,0x3a9168,DOUBLEWITHTWODWORD INTREE (0x65100000,0x00000000)},
{VT_exponent,22,0x3a9169,DOUBLEWITHTWODWORD INTREE (0x65200000,0x00000000)},
{VT_exponent,22,0x3a916a,DOUBLEWITHTWODWORD INTREE(0x65300000,0x00000000)},
{VT_exponent,22,0x3a916b,DOUBLEWITHTWODWORD INTREE (0x65400000,0x00000000)},

286 © IS0 2008 — Al rights reserved

{VT_exponent,22,0x3a916c,DOUBLEWITHTWODWORD INTREE (0x65500000,0x00000000)},
{VT_exponent,22,0x3a916d,DOUBLEWITHTWODWORD INTREE (0x65600000,0x00000000)},
{VT_exponent,22,0x3a916e ,DOUBLEWITHTWODWORD INTREE (0x65700000 ,0x00000000)},
{VT_exponent,22,0x3a916F,DOUBLEWITHTWODWORD INTREE (0x65800000,0x00000000)},
{VT_exponent,22,0x3a9170,DOUBLEWITHTWODWORD INTREE (0x65900000,0x00000000)},
{VT_exponent,22,0x3a9171,DOUBLEWITHTWODWORD INTREE (0x65a00000,0x00000000)} ,
{VT_exponent,22,0x3a9172,DOUBLEWITHTWODWORD INTREE (0x65b00000,0x00000000)},
{VT_exponent,22,0x3a9173,DOUBLEWITHTWODWORD INTREE (0x65c00000,0x00000000)},
{VT_exponent,22,0x3a9174 ,DOUBLEWITHTWODWORD INTREE (0x65d00000 ,0x00000000)},
{VT_exponent, 22 ,0x3a9175 , DOUBLEWI THTWODWORD INTREE (0x65e00000 ,0x00000000) } ,
{VT_exponent,22,0x3a9176,DOUBLEWITHTWODWORD INTREE (0x65f00000,0x00000000)},
{VT_exponent,22,0x3a9177,DOUBLEWITHTWODWORD INTREE (0x66000000,0x00000000) } ,
{VT_exponent,22,0x3a9178,DOUBLEWITHTWODWORD INTREE (0x66100000,0x00000000)},
{VT_exponent,22,0x3a9179,DOUBLEWITHTWODWORD INTREE (0x66200000,0x00000000)},
{VT_exponent,22,0x3a917a,DOUBLEWITHTWODWORD INTREE (0x66300000,0x00000000)},
{VT_exponent,22,0x3a917b,DOUBLEWITHTWODWORD INTREE (0x66400000,0x00000000)},
{VT_exponent,22,0x3a917c,DOUBLEWITHTWODWORD INTREE (0x66500000,0x00000000)},
{VT_exponent,22,0x3a917d,DOUBLEWITHTWODWORD INTREE (0x66600000,0x00000000)},
{VT_exponent,22,0x3a917e,DOUBLEWITHTWODWORD INTREE (0x66700000 ,0x00000000)},
{VT_exponent,22,0x3a917f,DOUBLEWITHTWODWORD INTREE (0x66800000 ,0x00000000)},
{VT_exponent,22,0x3a9180,DOUBLEWITHTWODWORD INTREE (0x66900000,0x00000000)},
{VT_exponent,22,0x3a9181,DOUBLEWITHTWODWORD INTREE (0x66a00000,0x00000000)} ,
{VT_exponent,22,0x3a9182,DOUBLEWI THTWODWORD INTREE (0x66b00000,0x00000000) },
{VT_exponent,22,0x3a9183,DOUBLEWITHTWODWORD INTREE (0x66c00000,0x00000000)},
{VT_exponent,22,0x3a9184 ,DOUBLEWITHTWODWORD INTREE (0x66d00000,0x00000000)},
{VT_exponent,22,0x3a9185,DOUBLEWITHTWODWORD INTREE (0x66e00000,0x00000000)},
{VT_exponent,22,0x3a9186 ,DOUBLEWITHTWODWORD INTREE (0x66f00000,0x00000000)},
{VT_exponent,22,0x3a9187 ,DOUBLEWITHTWODWORD INTREE (0x67000000,0x00000000)},
{VT_exponent,22,0x3a9188, DOUBLEWI THTWODWORD INTREE (0x67100000 ,0x00000000)},
{VT_exponent,22,0x3a9189,DOUBLEWITHTWODWORD INTREE(0x67200000,0x00000000)},
{VT_exponent,22,0x3a918a,DOUBLEWITHTWODWORD INTREE (0x67300000,0x00000000)},
{VT_exponent,22,0x3a918b,DOUBLEWITHTWODWORD INTREE (0x67400000 ,0x00000000)},
{VT_exponent,22,0x3a918c ,DOUBLEWITHTWODWORD INTREE (0x67500000 ,0x00000000)},
{VT_exponent,22,0x3a918d,DOUBLEWITHTWODWORD INTREE (0x67600000,0x00000000)},
{VT_exponent,22,0x3a918e,DOUBLEWITHTWODWORD INTREE (0x67700000,0x00000000)},
{VT_exponent,22,0x3a918Ff,DOUBLEWITHTWODWORD INTREE (0x67800000,0x00000000)},
{VT_exponent,22,0x3a9190,DOUBLEWITHTWODWORD INTREE (0x67900000,0x00000000)},
{VT_exponent,22,0x3a9191,DOUBLEWITHTWODWORD INTREE (0x67a00000,0x00000000)},
{VT_exponent,22,0x3a9192 ,DOUBLEWITHTWODWORD INTREE (0x67b00000 ,0x00000000) },
{VT_exponent,22,0x3a9193,DOUBLEWITHTWODWORD INTREE (0x67c00000,0x00000000)},
{VT_exponent,22,0x3a9194 ,DOUBLEWI THTWODWORD INTREE (0x67d00000,0x00000000) },
{VT_exponent,22,0x3a9195,DOUBLEWITHTWODWORD INTREE (0x67e00000,0x00000000)},
{VT_exponent,22,0x3a9196 ,DOUBLEWITHTWODWORD INTREE (0x67f00000 ,0x00000000)},
{VT_exponent,22,0x3a9197 ,DOUBLEWITHTWODWORD INTREE (0x68000000,0x00000000)},
{VT_exponent,22,0x3a9198,DOUBLEWITHTWODWORD INTREE (0x68100000,0x00000000)},
{VT_exponent,22,0x3a9199,DOUBLEWITHTWODWORD INTREE(0x68200000,0x00000000)},
{VT_exponent,22,0x3a919a,DOUBLEWI THTWODWORD INTREE (0x68300000,0x00000000)},
{VT_exponent,22,0x3a919b,DOUBLEWITHTWODWORD INTREE (0x68400000,0x00000000)},
{VT_exponent,22,0x3a919c ,DOUBLEWITHTWODWORD INTREE (0x68500000 ,0x00000000) },
{VT_exponent,22,0x3a919d ,DOUBLEWITHTWODWORD INTREE (0x68600000 ,0x00000000) },
{VT_exponent,22,0x3a919e,DOUBLEWITHTWODWORD INTREE (0x68700000,0x00000000) },
{VT_exponent,22,0x3a919f,DOUBLEWITHTWODWORD INTREE (0x68800000,0x00000000)},
{VT_exponent,22,0x3a91a0,DOUBLEWITHTWODWORD INTREE (0x68900000 ,0x00000000)},
{VT_exponent,22,0x3a91al,DOUBLEWITHTWODWORD INTREE (0x68a00000,0x00000000)},
{VT_exponent,22,0x3a91a2,DOUBLEWITHTWODWORD INTREE (0x68b00000,0x00000000)},
{VT_exponent,22,0x3a91a3,DOUBLEWITHTWODWORD INTREE (0x68c00000,0x00000000)},
{VT_exponent,22,0x3a91a4 ,DOUBLEWITHTWODWORD INTREE (0x68d00000,0x00000000)},
{VT_exponent,22,0x3a91a5,DOUBLEWITHTWODWORD INTREE (0x68e00000,0x00000000)},
{VT_exponent,22,0x3a91a6 ,DOUBLEWITHTWODWORD INTREE (0x68f00000 ,0x00000000)},
{VT_exponent,22,0x3a91a7 ,DOUBLEWITHTWODWORD INTREE (0x69000000 ,0x00000000)},
{VT_exponent,22,0x3a91a8,DOUBLEWITHTWODWORD INTREE (0x69100000,0x00000000)},

© IS0 2008 — All rights reserved 287

{VT_exponent,22,0x3a91a9,DOUBLEWI THTWODWORD INTREE (0x69200000,0x00000000)},
{VT_exponent,22,0x3a91aa,DOUBLEWITHTWODWORD INTREE (0x69300000,0x00000000)},
{VT_exponent,22,0x3a91ab,DOUBLEWITHTWODWORD INTREE (0x69400000,0x00000000)},
{VT_exponent,22,0x3a91lac,DOUBLEWITHTWODWORD INTREE (0x69500000,0x00000000)},
{VT_exponent,22,0x3a91lad,DOUBLEWITHTWODWORD INTREE (0x69600000,0x00000000)},
{VT_exponent,22,0x3a91ae ,DOUBLEWITHTWODWORD INTREE(0x69700000,0x00000000)},
{VT_exponent,22,0x3a91laf,DOUBLEWI THTWODWORD INTREE (0x69800000,0x00000000)},
{VT_exponent,22,0x3a91b0,DOUBLEWITHTWODWORD INTREE (0x69900000,0x00000000)},
{VT_exponent,22,0x3a91b1,DOUBLEWITHTWODWORD INTREE (0x69a00000,0x00000000)},
{VT_exponent,22,0x3a91b2 , DOUBLEW I THTWODWORD INTREE (0x69b00000 , 0x00000000)},
{VT_exponent,22,0x3a91b3,DOUBLEWI THTWODWORD INTREE (0x69c00000,0x00000000)},
{VT_exponent,22,0x3a91b4 ,DOUBLEWITHTWODWORD INTREE (0x69d00000 ,0x00000000)},
{VT_exponent,22,0x3a91b5,DOUBLEWITHTWODWORD INTREE (0x69€00000,0x00000000)},
{VT_exponent,22,0x3a91b6 ,DOUBLEWI THTWODWORD INTREE (0x69f00000,0x00000000)},
{VT_exponent,22,0x3a91b7,DOUBLEWITHTWODWORD INTREE (0x6a000000,0x00000000)},
{VT_exponent,22,0x3a91b8,DOUBLEWITHTWODWORD INTREE (0x6a100000,0x00000000)},
{VT_exponent,22,0x3a91b9,DOUBLEWI THTWODWORD INTREE (0x6a200000,0x00000000)},
{VT_exponent,22,0x3a91ba,DOUBLEWITHTWODWORD INTREE (0x6a300000,0x00000000)},
{VT_exponent,22,0x3a91bb,DOUBLEWITHTWODWORD INTREE (0x62400000,0x00000000)},
{VT_exponent,22,0x3a91bc , DOUBLEW I THTWODWORD INTREE (0x6a500000, 0x00000000)},
{VT_exponent,22,0x3a91bd,DOUBLEWITHTWODWORD INTREE (0x6a600000,0x00000000)},
{VT_exponent,22,0x3a91be ,DOUBLEWITHTWODWORD INTREE (0x6a700000,0x00000000)},
{VT_exponent,22,0x3a91bf,DOUBLEWITHTWODWORD INTREE (0x6a800000,0x00000000)},
{VT_exponent,22,0x3a91c0,DOUBLEWITHTWODWORD INTREE (0x6a900000,0x00000000)},
{VT_exponent,22,0x3a91cl,DOUBLEWITHTWODWORD INTREE (0x6aa00000,0x00000000)},
{VT_exponent,22,0x3a91c2,DOUBLEWITHTWODWORD INTREE (0x6ab00000,0x00000000)},
{VT_exponent,22,0x3a91c3,DOUBLEWI THTWODWORD INTREE (0x6ac00000,0x00000000)},
{VT_exponent,22,0x3a91c4,DOUBLEWITHTWODWORD INTREE (0x6ad00000,0x00000000)},
{VT_exponent,22,0x3a91c5,DOUBLEWITHTWODWORD INTREE (0x6ae00000,0x00000000)},
{VT_exponent,22,0x3a91c6,DOUBLEWITHTWODWORD INTREE (0x6af00000,0x00000000)},
{VT_exponent,22,0x3a91c7,DOUBLEWITHTWODWORD INTREE (0x6b000000,0x00000000)},
{VT_exponent,22,0x3a91c8,DOUBLEWITHTWODWORD INTREE(0x6b100000,0x00000000)},
{VT_exponent,22,0x3a91c9,DOUBLEWITHTWODWORD INTREE (0x6b200000,0x00000000)},
{VT_exponent,22,0x3a91lca,DOUBLEWITHTWODWORD INTREE (0x6b300000,0x00000000)},
{VT_exponent,22,0x3a91cb,DOUBLEWITHTWODWORD INTREE (0x6b400000,0x00000000)},
{VT_exponent,22,0x3a91cc,DOUBLEWITHTWODWORD INTREE (0x6b500000,0x00000000)},
{VT_exponent,22,0x3a91cd,DOUBLEWITHTWODWORD INTREE (0x6b600000 ,0x00000000)},
{VT_exponent,22,0x3a91ce,DOUBLEWITHTWODWORD INTREE (0x6b700000,0x00000000)},
{VT_exponent,22,0x3a91cf,DOUBLEWITHTWODWORD INTREE(0x6b800000,0x00000000)},
{VT_exponent,22,0x3a91d0, DOUBLEW I THTWODWORD INTREE (0x6b900000, 0x00000000)},
{VT_exponent,22,0x3a91d1, DOUBLEWI THTWODWORD I NTREE (0x6ba00000 , 0x00000000) } ,
{VT_exponent,22,0x3a91d2,DOUBLEWITHTWODWORD INTREE (0x6bb00000,0x00000000)},
{VT_exponent,22,0x3a91d3,DOUBLEWITHTWODWORD INTREE (0x6bc00000,0x00000000)},
{VT_exponent,22,0x3a91d4 ,DOUBLEWITHTWODWORD INTREE (0x6bd00000 ,0x00000000)},
{VT_exponent,22,0x3a91d5,DOUBLEWI THTWODWORD INTREE (0x6be00000,0x00000000)},
{VT_exponent,22,0x3a91d6 ,DOUBLEWITHTWODWORD INTREE (0x6b¥00000,0x00000000)},
{VT_exponent,22,0x3a91d7 ,DOUBLEWI THTWODWORD INTREE (0x6c000000,0x00000000)},
{VT_exponent,22,0x3a91d8,DOUBLEWITHTWODWORD INTREE (0x6c100000,0x00000000)},
{VT_exponent,22,0x3a91d9,DOUBLEWITHTWODWORD INTREE (0x6c200000,0x00000000)},
{VT_exponent,22,0x3a91da,DOUBLEWITHTWODWORD INTREE (0x6c300000,0x00000000)},
{VT_exponent, 22,0x3a91db, DOUBLEWI THTWODWORD I NTREE (0X6c400000 , 0x00000000) } ,
{VT_exponent,22,0x3a91dc,DOUBLEWITHTWODWORD INTREE (0x6c500000,0x00000000)},
{VT_exponent,22,0x3a91dd ,DOUBLEWITHTWODWORD INTREE (0x6c600000,0x00000000)},
{VT_exponent,22,0x3a91de ,DOUBLEWI THTWODWORD INTREE (0x6c700000,0x00000000)},
{VT_exponent,22,0x3a91df,DOUBLEWI THTWODWORD INTREE (0x6c800000,0x00000000)},
{VT_exponent,22,0x3a91e0,DOUBLEWITHTWODWORD INTREE (0x6c900000,0x00000000)},
{VT_exponent,22,0x3a91e1, DOUBLEWI THTWODWORD I NTREE (0x6ca00000 , 0x00000000) } ,
{VT_exponent,22,0x3a91e2,DOUBLEWITHTWODWORD INTREE (0x6cb00000,0x00000000)},
{VT_exponent,22,0x3a91e3,DOUBLEWITHTWODWORD INTREE (0x6cc00000,0x00000000)},
{VT_exponent,22,0x3a91e4 ,DOUBLEWITHTWODWORD INTREE (0x6cd00000,0x00000000)},
{VT_exponent,22,0x3a91e5, DOUBLEWI THTWODWORD I NTREE (0x6ce00000 , 0x00000000) } ,

288 © IS0 2008 — Al rights reserved

{VT_exponent,22,0x3a91e6,DOUBLEWITHTWODWORD INTREE (0x6cf00000,0x00000000)},
{VT_exponent,22,0x3a91e7 ,DOUBLEWITHTWODWORD INTREE (0x6d000000 ,0x00000000)},
{VT_exponent,22,0x3a91e8,DOUBLEWI THTWODWORD INTREE (0x6d100000,0x00000000)},
{VT_exponent,22,0x3a91e9,DOUBLEWITHTWODWORD INTREE (0x6d200000,0x00000000)},
{VT_exponent,22,0x3a91lea, DOUBLEWITHTWODWORD INTREE (0x6d300000,0x00000000)},
{VT_exponent,22,0x3a91eb ,DOUBLEWITHTWODWORD INTREE (0x6d400000 ,0x00000000)},
{VT_exponent,22,0x3a91ec,DOUBLEWITHTWODWORD INTREE (0x6d500000,0x00000000)},
{VT_exponent,22,0x3a91ed,DOUBLEWITHTWODWORD INTREE (0x6d600000,0x00000000)},
{VT_exponent,22,0x3a91ee, DOUBLEWI THTWODWORD INTREE (0x6d700000,0x00000000)},
{VT_exponent, 22 ,0x3a91ef, DOUBLEW I THTWODWORD INTREE (0x6d800000 , 0x00000000)},
{VT_exponent,22,0x3a91f0,DOUBLEWITHTWODWORD INTREE (0x6d900000,0x00000000)},
{VT_exponent,22,0x3a91f1,DOUBLEWITHTWODWORD INTREE (0x6da00000 ,0x00000000)},
{VT_exponent,22,0x3a91f2,DOUBLEWITHTWODWORD INTREE (0x6db00000,0x00000000)},
{VT_exponent,22,0x3a91f3,DOUBLEWITHTWODWORD INTREE (0x6dc00000,0x00000000)},
{VT_exponent,22,0x3a91f4,DOUBLEWITHTWODWORD INTREE (0x6dd00000,0x00000000)},
{VT_exponent,22,0x3a91f5,DOUBLEWITHTWODWORD INTREE (0x6de00000 ,0x00000000)},
{VT_exponent,22,0x3a91f6,DOUBLEWITHTWODWORD INTREE (0x6df00000,0x00000000)},
{VT_exponent,22,0x3a91f7,DOUBLEWITHTWODWORD INTREE (0x6e000000,0x00000000)},
{VT_exponent,22,0x3a91f8,DOUBLEWI THTWODWORD INTREE (0x6e100000,0x00000000)},
{VT_exponent,22,0x3a91f9,DOUBLEWITHTWODWORD INTREE (0x6€200000,0x00000000)},
{VT_exponent,22,0x3a91fa,DOUBLEWITHTWODWORD INTREE (0x6e300000,0x00000000)},
{VT_exponent,22,0x3a91fb,DOUBLEWITHTWODWORD INTREE (0x6€400000 ,0x00000000)},
{VT_exponent,22,0x3a91fc,DOUBLEWITHTWODWORD INTREE (0x6e500000,0x00000000)},
{VT_exponent,22,0x3a91fd,DOUBLEWITHTWODWORD INTREE (0x6e600000,0x00000000)},
{VT_exponent,22,0x3a91fe,DOUBLEWITHTWODWORD INTREE (0x6e700000,0x00000000)},
{VT_exponent,22,0x3a91ff,DOUBLEWITHTWODWORD INTREE (0x6e800000,0x00000000)},
{VT_exponent,22,0x3a9200,DOUBLEWITHTWODWORD INTREE (0x6e900000,0x00000000)},
{VT_exponent,22,0x3a9201,DOUBLEWITHTWODWORD INTREE (0x6ea00000,0x00000000)},
{VT_exponent,22,0x3a9202,DOUBLEWI THTWODWORD INTREE (0x6eb00000,0x00000000) },
{VT_exponent,22,0x3a9203,DOUBLEWITHTWODWORD INTREE (0x6ec00000 ,0x00000000)},
{VT_exponent,22,0x3a9204 ,DOUBLEWI THTWODWORD INTREE (0x6ed00000,0x00000000)},
{VT_exponent,22,0x3a9205 ,DOUBLEWITHTWODWORD INTREE (0x6ee00000 ,0x00000000) },
{VT_exponent,22,0x3a9206 ,DOUBLEWITHTWODWORD INTREE (0x6ef00000 ,0x00000000)},
{VT_exponent,22,0x3a9207 ,DOUBLEWITHTWODWORD INTREE (0x6f000000,0x00000000)},
{VT_exponent,22,0x3a9208 ,DOUBLEWITHTWODWORD INTREE (0x6¥100000,0x00000000)},
{VT_exponent,22,0x3a9209,DOUBLEWITHTWODWORD INTREE (0x6¥200000,0x00000000)},
{VT_exponent,22,0x3a920a,DOUBLEWI THTWODWORD INTREE (0x6¥300000,0x00000000)},
{VT_exponent,22,0x3a920b,DOUBLEWITHTWODWORD INTREE (0x6f400000,0x00000000)},
{VT_exponent,22,0x3a920c ,DOUBLEWITHTWODWORD INTREE (0x6f500000 ,0x00000000) },
{VT_exponent,22,0x3a920d ,DOUBLEWITHTWODWORD INTREE (0x6f600000 ,0x00000000) },
{VT_exponent, 22 ,0x3a920e , DOUBLEWI THTWODWORD I NTREE (0x6 700000, 0x00000000) },
{VT_exponent,22,0x3a920f,DOUBLEWITHTWODWORD INTREE (0x6¥800000,0x00000000)},
{VT_exponent,22,0x3a9210,DOUBLEWITHTWODWORD INTREE (0x6f900000 ,0x00000000)},
{VT_exponent,22,0x3a9211,DOUBLEWITHTWODWORD INTREE (0x6fa00000,0x00000000)},
{VT_exponent,22,0x3a9212,DOUBLEWITHTWODWORD INTREE (0x6fb00000,0x00000000)},
{VT_exponent,22,0x3a9213,DOUBLEWITHTWODWORD INTREE (0x6fc00000,0x00000000)},
{VT_exponent,22,0x3a9214 ,DOUBLEWITHTWODWORD INTREE (0x6fd00000,0x00000000)},
{VT_exponent,22,0x3a9215,DOUBLEWITHTWODWORD INTREE (0x6fe00000,0x00000000)},
{VT_exponent,22,0x3a9216 ,DOUBLEWITHTWODWORD INTREE (0x6ff00000 ,0x00000000)},
{VT_exponent,22,0x3a9217 , DOUBLEW I THTWODWORD INTREE (070000000, 0x00000000)},
{VT_exponent, 22,0x3a9218 , DOUBLEWI THTWODWORD I NTREE(0x70100000 , 0x00000000) },
{VT_exponent,22,0x3a9219,DOUBLEWITHTWODWORD INTREE (0x70200000,0x00000000)},
{VT_exponent,22,0x3a921a,DOUBLEWITHTWODWORD INTREE (0x70300000,0x00000000)},
{VT_exponent,22,0x3a921b,DOUBLEWITHTWODWORD INTREE (0x70400000,0x00000000)},
{VT_exponent,22,0x3a921c,DOUBLEWITHTWODWORD INTREE (0x70500000,0x00000000)},
{VT_exponent,22,0x3a921d,DOUBLEWITHTWODWORD INTREE (0x70600000,0x00000000)},
{VT_exponent, 22,0x3a921e , DOUBLEWI THTWODWORD INTREE(0x70700000 , 0x00000000) },
{VT_exponent,22,0x3a921f,DOUBLEWITHTWODWORD INTREE (0x70800000,0x00000000)},
{VT_exponent,22,0x3a9220,DOUBLEWITHTWODWORD INTREE (0x70900000 ,0x00000000)},
{VT_exponent,22,0x3a9221 ,DOUBLEWITHTWODWORD INTREE (0x70a00000 ,0x00000000)},
{VT_exponent, 22,0x3a9222 , DOUBLEWI THTWODWORD I NTREE (0x70b00000 , 0X00000000) },

© IS0 2008 — Al rights reserved 289

{VT_exponent,22,0x3a9223,DOUBLEWI THTWODWORD INTREE (0x70c00000,0x00000000)},
{VT_exponent,22,0x3a9224 ,DOUBLEWITHTWODWORD INTREE (0x70d00000,0x00000000)},
{VT_exponent,22,0x3a9225,DOUBLEWI THTWODWORD INTREE (0x70e00000,0x00000000)},
{VT_exponent,22,0x3a9226 ,DOUBLEWI THTWODWORD INTREE (0x70¥00000,0x00000000)},
{VT_exponent,22,0x3a9227 ,DOUBLEWITHTWODWORD INTREE (0x71000000,0x00000000)},
{VT_exponent,22,0x3a9228,DOUBLEWITHTWODWORD INTREE(0x71100000,0x00000000)},
{VT_exponent,22,0x3a9229 ,DOUBLEWI THTWODWORD INTREE (0x71200000,0x00000000)},
{VT_exponent,22,0x3a922a,DOUBLEWI THTWODWORD INTREE (0x71300000,0x00000000)},
{VT_exponent,22,0x3a922b , DOUBLEW I THTWODWORD INTREE (0x71400000,0x00000000)},
{VT_exponent,22,0x3a922c , DOUBLEW I THTWODWORD INTREE (071500000, 0x00000000)},
{VT_exponent,22,0x3a922d,DOUBLEWI THTWODWORD INTREE (0x71600000,0x00000000)},
{VT_exponent,22,0x3a922e ,DOUBLEWI THTWODWORD INTREE (0x71700000,0x00000000)},
{VT_exponent,22,0x3a922f,DOUBLEWI THTWODWORD INTREE (0x71800000,0x00000000)},
{VT_exponent,22,0x3a9230,DOUBLEWI THTWODWORD INTREE (0x71900000,0x00000000)},
{VT_exponent,22,0x3a9231,DOUBLEWI THTWODWORD INTREE (0x71a00000,0x00000000)},
{VT_exponent,22,0x3a9232,DOUBLEWITHTWODWORD INTREE (0x71b00000,0x00000000)},
{VT_exponent,22,0x3a9233,DOUBLEWI THTWODWORD INTREE (0x71c00000,0x00000000)},
{VT_exponent,22,0x3a9234 ,DOUBLEWI THTWODWORD INTREE (0x71d00000,0x00000000)},
{VT_exponent,22,0x3a9235 , DOUBLEW I THTWODWORD INTREE (0x71e00000, 0x00000000)},
{VT_exponent, 22 ,0x3a9236 , DOUBLEW I THTWODWORD INTREE (0x71£00000, 0x00000000)},
{VT_exponent,22,0x3a9237 ,DOUBLEWI THTWODWORD INTREE (0x72000000,0x00000000)},
{VT_exponent,22,0x3a9238,DOUBLEWITHTWODWORD INTREE (0x72100000,0x00000000)},
{VT_exponent,22,0x3a9239 , DOUBLEW I THTWODWORD INTREE (072200000, 0x00000000)},
{VT_exponent,22,0x3a923a,DOUBLEWI THTWODWORD INTREE (0x72300000,0x00000000)},
{VT_exponent,22,0x3a923b,DOUBLEWI THTWODWORD INTREE (0x72400000,0x00000000)},
{VT_exponent,22,0x3a923c,DOUBLEWITHTWODWORD INTREE (0x72500000,0x00000000)},
{VT_exponent,22,0x3a923d,DOUBLEWI THTWODWORD INTREE (0x72600000,0x00000000)},
{VT_exponent,22,0x3a923e,DOUBLEWI THTWODWORD INTREE (0x72700000,0x00000000)},
{VT_exponent,22,0x3a923f,DOUBLEWI THTWODWORD INTREE (0x72800000,0x00000000)},
{VT_exponent,22,0x3a9240 , DOUBLEW I THTWODWORD INTREE (072900000, 0x00000000)},
{VT_exponent,22,0x3a9241,DOUBLEWI THTWODWORD INTREE (0x72a00000,0x00000000)},
{VT_exponent,22,0x3a9242,DOUBLEWITHTWODWORD INTREE (0x72b00000,0x00000000)},
{VT_exponent,22,0x3a9243,DOUBLEWITHTWODWORD INTREE (0x72c00000,0x00000000)},
{VT_exponent,22,0x3a9244 ,DOUBLEWI THTWODWORD INTREE (0x72d00000,0x00000000)},
{VT_exponent,22,0x3a9245,DOUBLEWI THTWODWORD INTREE (0x72e00000,0x00000000)},
{VT_exponent,22,0x3a9246,DOUBLEWITHTWODWORD INTREE (0x72f00000,0x00000000)},
{VT_exponent,22,0x3a9247 ,DOUBLEWI THTWODWORD INTREE (0x73000000,0x00000000)},
{VT_exponent,22,0x3a9248,DOUBLEWI THTWODWORD INTREE (0x73100000,0x00000000)},
{VT_exponent,22,0x3a9249,DOUBLEWITHTWODWORD INTREE (0x73200000,0x00000000)},
{VT_exponent,22,0x3a924a, DOUBLEW I THTWODWORD INTREE (073300000, 0x00000000)},
{VT_exponent, 22,,0x3a924b , DOUBLEWI THTWODWORD INTREE(0x 73400000 , 0x00000000)} ,
{VT_exponent,22,0x3a924c,DOUBLEWITHTWODWORD INTREE (0x73500000,0x00000000)},
{VT_exponent,22,0x3a924d ,DOUBLEWITHTWODWORD INTREE (0x73600000,0x00000000)},
{VT_exponent,22,0x3a924e,DOUBLEWI THTWODWORD INTREE (0x73700000,0x00000000)},
{VT_exponent,22,0x3a924f,DOUBLEWITHTWODWORD INTREE (0x73800000,0x00000000)},
{VT_exponent,22,0x3a9250,DOUBLEWITHTWODWORD INTREE (0x73900000,0x00000000)},
{VT_exponent,22,0x3a9251,DOUBLEWI THTWODWORD INTREE (0x73a00000,0x00000000)},
{VT_exponent,22,0x3a9252,DOUBLEWI THTWODWORD INTREE (0x73b00000,0x00000000)},
{VT_exponent,22,0x3a9253,DOUBLEWITHTWODWORD INTREE (0x73c00000,0x00000000)},
{VT_exponent, 22 ,0x3a9254 , DOUBLEW I THTWODWORD INTREE (0x73d00000, 0x00000000)},
{VT_exponent, 22,,0x3a9255 , DOUBLEWI THTWODWORD INTREE(0x 7300000, 0x00000000)} ,
{VT_exponent,22,0x3a9256 ,DOUBLEWITHTWODWORD INTREE (0x73f00000,0x00000000)},
{VT_exponent,22,0x3a9257 ,DOUBLEWITHTWODWORD INTREE (0x74000000,0x00000000)},
{VT_exponent,22,0x3a9258,DOUBLEWI THTWODWORD INTREE (0x74100000,0x00000000)},
{VT_exponent,22,0x3a9259,DOUBLEWI THTWODWORD INTREE (0x74200000,0x00000000)},
{VT_exponent,22,0x3a925a,DOUBLEWI THTWODWORD INTREE (0x74300000,0x00000000)},
{VT_exponent, 22,,0x3a925b , DOUBLEWI THTWODWORD INTREE(0x 74400000, 0x00000000)} ,
{VT_exponent,22,0x3a925c,DOUBLEWI THTWODWORD INTREE (0x74500000,0x00000000)},
{VT_exponent,22,0x3a925d,DOUBLEWITHTWODWORD INTREE (0x74600000,0x00000000)},
{VT_exponent,22,0x3a925e , DOUBLEW I THTWODWORD INTREE (0x74700000, 0x00000000)},
{VT_exponent, 22,,0x3a925F , DOUBLEWI THTWODWORD INTREE(0x 74800000, 0x00000000)} ,

290 © IS0 2008 — Al rights reserved

{VT_exponent,22,0x3a9260 ,DOUBLEWITHTWODWORD INTREE (0x74900000,0x00000000)},
{VT_exponent,22,0x3a9261 ,DOUBLEWITHTWODWORD INTREE (0x74a00000 ,0x00000000)},
{VT_exponent,22,0x3a9262,DOUBLEWITHTWODWORD INTREE (0x74b00000 ,0x00000000)},
{VT_exponent,22,0x3a9263,DOUBLEWITHTWODWORD INTREE (0x74c00000,0x00000000)},
{VT_exponent,22,0x3a9264 ,DOUBLEWITHTWODWORD INTREE (0x74d00000,0x00000000)},
{VT_exponent, 22 ,0x3a9265 , DOUBLEWI THTWODWORD INTREE (0x74e00000 , 0x00000000) } ,
{VT_exponent,22,0x3a9266 ,DOUBLEWITHTWODWORD INTREE (0x74¥00000,0x00000000)},
{VT_exponent,22,0x3a9267 ,DOUBLEWITHTWODWORD INTREE (0x75000000,0x00000000)},
{VT_exponent,22,0x3a9268 ,DOUBLEWITHTWODWORD INTREE (0x75100000,0x00000000)},
{VT_exponent, 22 ,0x3a9269 , DOUBLEWI THTWODWORD INTREE (0x75200000 ,0x00000000) } ,
{VT_exponent,22,0x3a926a,DOUBLEWITHTWODWORD INTREE (0x75300000,0x00000000)},
{VT_exponent, 22 ,0x3a926b , DOUBLEWI THTWODWORD INTREE (0x75400000 , 0x00000000) } ,
{VT_exponent,22,0x3a926c,DOUBLEWI THTWODWORD INTREE (0x75500000,0x00000000) },
{VT_exponent,22,0x3a926d ,DOUBLEWITHTWODWORD INTREE (0x75600000,0x00000000)},
{VT_exponent,22,0x3a926e ,DOUBLEWITHTWODWORD INTREE (0x75700000,0x00000000)},
{VT_exponent,22,0x3a926f,DOUBLEWI THTWODWORD INTREE (0x75800000,0x00000000)},
{VT_exponent,22,0x3a9270,DOUBLEWITHTWODWORD INTREE (0x75900000,0x00000000)},
{VT_exponent,22,0x3a9271,DOUBLEWITHTWODWORD INTREE (0x75a00000,0x00000000)},
{VT_exponent,22,0x3a9272,DOUBLEWITHTWODWORD INTREE (0x75b00000 ,0x00000000)},
{VT_exponent,22,0x3a9273,DOUBLEWITHTWODWORD INTREE (0x75c00000,0x00000000)},
{VT_exponent,22,0x3a9274 ,DOUBLEWI THTWODWORD INTREE (0x75d00000,0x00000000)},
{VT_exponent,22,0x3a9275,DOUBLEWITHTWODWORD INTREE (0x75e00000 ,0x00000000)},
{VT_exponent,22,0x3a9276,DOUBLEWITHTWODWORD INTREE (0x75f00000 ,0x00000000)},
{VT_exponent,22,0x3a9277 ,DOUBLEWITHTWODWORD INTREE (0x76000000,0x00000000)},
{VT_exponent,22,0x3a9278,DOUBLEWITHTWODWORD INTREE (0x76100000,0x00000000)},
{VT_exponent,22,0x3a9279,DOUBLEWITHTWODWORD INTREE(0x76200000,0x00000000)},
{VT_exponent,22,0x3a927a,DOUBLEWI THTWODWORD INTREE (0x76300000,0x00000000)},
{VT_exponent,22,0x3a927b,DOUBLEWITHTWODWORD INTREE (0x76400000,0x00000000)},
{VT_exponent,22,0x3a927c,DOUBLEWI THTWODWORD INTREE (0x76500000,0x00000000)},
{VT_exponent,22,0x3a927d,DOUBLEWITHTWODWORD INTREE (0x76600000 ,0x00000000)},
{VT_exponent,22,0x3a927e,DOUBLEWI THTWODWORD INTREE (0x76700000,0x00000000)},
{VT_exponent,22,0x3a927f,DOUBLEWITHTWODWORD INTREE (0x76800000 ,0x00000000)},
{VT_exponent,22,0x3a9280 ,DOUBLEWITHTWODWORD INTREE (0x76900000 ,0x00000000)},
{VT_exponent,22,0x3a9281,DOUBLEWITHTWODWORD INTREE (0x76a00000,0x00000000)},
{VT_exponent,22,0x3a9282,DOUBLEWITHTWODWORD INTREE (0x76b00000,0x00000000)},
{VT_exponent,22,0x3a9283,DOUBLEWITHTWODWORD INTREE (0x76c00000,0x00000000)},
{VT_exponent,22,0x3a9284 ,DOUBLEWI THTWODWORD INTREE (0x76d00000,0x00000000)},
{VT_exponent,22,0x3a9285,DOUBLEWI THTWODWORD INTREE (0x76e00000,0x00000000)},
{VT_exponent,22,0x3a9286 ,DOUBLEWITHTWODWORD INTREE (0x76f00000 ,0x00000000)},
{VT_exponent,22,0x3a9287 ,DOUBLEWITHTWODWORD INTREE (0x77000000,0x00000000)},
{VT_exponent,22,0x3a9288,DOUBLEWI THTWODWORD INTREE (0x77100000,0x00000000)},
{VT_exponent,22,0x3a9289,DOUBLEWITHTWODWORD INTREE(0x77200000,0x00000000)},
{VT_exponent,22,0x3a928a,DOUBLEWITHTWODWORD INTREE (0x77300000,0x00000000)},
{VT_exponent,22,0x3a928b,DOUBLEWITHTWODWORD INTREE (0x77400000,0x00000000)},
{VT_exponent,22,0x3a928c ,DOUBLEWITHTWODWORD INTREE (0x77500000,0x00000000)},
{VT_exponent,22,0x3a928d,DOUBLEWITHTWODWORD INTREE(0x77600000,0x00000000)},
{VT_exponent,22,0x3a928e ,DOUBLEWITHTWODWORD INTREE (0x77700000,0x00000000)},
{VT_exponent,22,0x3a928F,DOUBLEWI THTWODWORD INTREE (0x77800000,0x00000000)},
{VT_exponent,22,0x3a9290 ,DOUBLEWITHTWODWORD INTREE (0x77900000 ,0x00000000)},
{VT_exponent,22,0x3a9291 ,DOUBLEWITHTWODWORD INTREE (0x77a00000,0x00000000)},
{VT_exponent,22,0x3a9292,DOUBLEWI THTWODWORD INTREE (0x77b00000,,0x00000000) },
{VT_exponent,22,0x3a9293,DOUBLEWITHTWODWORD INTREE (0x77c00000,0x00000000)},
{VT_exponent, 22 ,0x3a9294 , DOUBLEWI THTWODWORD INTREE (0x77d00000 ,0x00000000) } ,
{VT_exponent,22,0x3a9295,DOUBLEWI THTWODWORD INTREE (0x77e00000,0x00000000)},
{VT_exponent,22,0x3a9296 ,DOUBLEWITHTWODWORD INTREE (0x77¥00000,0x00000000)},
{VT_exponent,22,0x3a9297 ,DOUBLEWITHTWODWORD INTREE (0x78000000,0x00000000)},
{VT_exponent,22,0x3a9298 ,DOUBLEWI THTWODWORD INTREE (0x78100000,0x00000000) },
{VT_exponent,22,0x3a9299,DOUBLEWITHTWODWORD INTREE (0x78200000,0x00000000)},
{VT_exponent,22,0x3a929a,DOUBLEWITHTWODWORD INTREE (0x78300000 ,0x00000000)},
{VT_exponent,22,0x3a929b ,DOUBLEWI THTWODWORD INTREE (0x78400000,0x00000000)},
{VT_exponent,22,0x3a929c, DOUBLEWI THTWODWORD INTREE (0x78500000,0x00000000) },

© IS0 2008 — All rights reserved 291

{VT_exponent,22,0x3a929d ,DOUBLEWI THTWODWORD INTREE (0x78600000,0x00000000)},
{VT_exponent,22,0x3a929e ,DOUBLEWITHTWODWORD INTREE (0x78700000,0x00000000)},
{VT_exponent,22,0x3a929f,DOUBLEWI THTWODWORD INTREE (0x78800000,0x00000000) },
{VT_exponent,22,0x3a92a0,DOUBLEWI THTWODWORD INTREE (0x78900000,0x00000000)},
{VT_exponent,22,0x3a92al,DOUBLEWITHTWODWORD INTREE (0x78a00000,0x00000000)},
{VT_exponent,22,0x3a92a2,DOUBLEWI THTWODWORD INTREE (0x78b00000,0x00000000)},
{VT_exponent,22,0x3a92a3,DOUBLEWI THTWODWORD INTREE (0x78c00000,0x00000000)},
{VT_exponent,22,0x3a92a4 ,DOUBLEWI THTWODWORD INTREE (0x78d00000,0x00000000)},
{VT_exponent,22,0x3a92a5,DOUBLEWI THTWODWORD INTREE (0x78e00000,0x00000000)},
{VT_exponent,22,0x3a92a6 , DOUBLEW I THTWODWORD INTREE (07800000, 0x00000000)},
{VT_exponent,22,0x3a92a7 ,DOUBLEWI THTWODWORD INTREE (0x79000000,0x00000000)},
{VT_exponent,22,0x3a92a8,DOUBLEWI THTWODWORD INTREE (0x79100000,0x00000000)},
{VT_exponent,22,0x3a92a9, DOUBLEWI THTWODWORD INTREE (0x79200000,0x00000000) },
{VT_exponent,22,0x3a92aa, DOUBLEWI THTWODWORD INTREE (0x79300000,0x00000000)},
{VT_exponent,22,0x3a92ab,DOUBLEWI THTWODWORD INTREE (0x79400000,0x00000000)},
{VT_exponent,22,0x3a92ac ,DOUBLEWITHTWODWORD INTREE (0x79500000,0x00000000)},
{VT_exponent,22,0x3a92ad,DOUBLEWI THTWODWORD INTREE (0x79600000,0x00000000)},
{VT_exponent,22,0x3a92ae ,DOUBLEWI THTWODWORD INTREE (0x79700000,0x00000000)},
{VT_exponent,22,0x3a92af,DOUBLEWI THTWODWORD INTREE (0x79800000,0x00000000)},
{VT_exponent,22,0x3a92b0 , DOUBLEW I THTWODWORD INTREE (0x79900000,0x00000000)},
{VT_exponent,22,0x3a92b1,DOUBLEWITHTWODWORD INTREE (0x79a00000,0x00000000)},
{VT_exponent,22,0x3a92b2 ,DOUBLEWITHTWODWORD INTREE (0x79b00000 ,0x00000000)},
{VT_exponent,22,0x3a92b3,DOUBLEWI THTWODWORD INTREE (0x79c00000,0x00000000)},
{VT_exponent,22,0x3a92b4 ,DOUBLEWI THTWODWORD INTREE (0x79d00000,0x00000000)},
{VT_exponent,22,0x3a92b5,DOUBLEWI THTWODWORD INTREE (0x79e00000,0x00000000)},
{VT_exponent,22,0x3a92b6 ,DOUBLEWI THTWODWORD INTREE (0x79f00000,0x00000000)},
{VT_exponent,22,0x3a92b7 ,DOUBLEWI THTWODWORD INTREE (0x7a000000,0x00000000)},
{VT_exponent,22,0x3a92b8,DOUBLEWI THTWODWORD INTREE (0x7a100000,0x00000000)},
{VT_exponent,22,0x3a92b9, DOUBLEWI THTWODWORD INTREE (0x7a200000,0x00000000)},
{VT_exponent,22,0x3a92ba,DOUBLEWITHTWODWORD INTREE (0x7a300000,0x00000000)},
{VT_exponent,22,0x3a92bb,DOUBLEWI THTWODWORD INTREE (0x7a400000,0x00000000)},
{VT_exponent,22,0x3a92bc,DOUBLEWITHTWODWORD INTREE (0x7a500000 ,0x00000000)},
{VT_exponent,22,0x3a92bd ,DOUBLEWITHTWODWORD INTREE (0x7a600000,0x00000000)},
{VT_exponent,22,0x3a92be ,DOUBLEWI THTWODWORD INTREE (0x7a700000,0x00000000)},
{VT_exponent,22,0x3a92bf,DOUBLEWI THTWODWORD INTREE (0x7a800000,0x00000000)},
{VT_exponent,22,0x3a92c0,DOUBLEWITHTWODWORD INTREE (0x7a900000,0x00000000)},
{VT_exponent,22,0x3a92c1,DOUBLEWITHTWODWORD INTREE (0x7aa00000,0x00000000)},
{VT_exponent,22,0x3a92c2,DOUBLEWI THTWODWORD INTREE (0x7ab00000,0x00000000)},
{VT_exponent,22,0x3a92c3,DOUBLEWITHTWODWORD INTREE (0x7ac00000,0x00000000)},
{VT_exponent,22,0x3a92c4 ,DOUBLEWITHTWODWORD INTREE (0x7ad00000,0x00000000)},
{VT_exponent, 22,0x3a92c5, DOUBLEWI THTWODWORD I NTREE (0x7ae00000 , 0x00000000) } ,
{VT_exponent,22,0x3a92c6,DOUBLEWITHTWODWORD INTREE (0x7af00000,0x00000000)},
{VT_exponent,22,0x3a92c7 ,DOUBLEWITHTWODWORD INTREE (0x7b000000,0x00000000)},
{VT_exponent,22,0x3a92c8,DOUBLEWI THTWODWORD INTREE (0x7b100000,0x00000000)},
{VT_exponent,22,0x3a92c9,DOUBLEWITHTWODWORD INTREE (0x7b200000,0x00000000)},
{VT_exponent,22,0x3a92ca, DOUBLEWITHTWODWORD INTREE(0x7b300000,0x00000000)},
{VT_exponent,22,0x3a92cb,DOUBLEWITHTWODWORD INTREE (0x7b400000,0x00000000)},
{VT_exponent,22,0x3a92cc,DOUBLEWI THTWODWORD INTREE (0x7b500000,0x00000000)},
{VT_exponent,22,0x3a92cd ,DOUBLEWITHTWODWORD INTREE (0x7b600000,0x00000000)},
{VT_exponent,22,0x3a92ce , DOUBLEW I THTWODWORD INTREE (0x7b700000, 0x00000000)},
{VT_exponent, 22,0x3a92cf, DOUBLEWI THTWODWORD I NTREE (0x7b800000 , 0x00000000) } ,
{VT_exponent,22,0x3a92d0,DOUBLEWITHTWODWORD INTREE (0x7b900000,0x00000000)},
{VT_exponent,22,0x3a92d1,DOUBLEWITHTWODWORD INTREE(0x7ba00000,0x00000000)},
{VT_exponent,22,0x3a92d2,DOUBLEWI THTWODWORD INTREE (0x7bb00000 ,0x00000000)},
{VT_exponent,22,0x3a92d3,DOUBLEWI THTWODWORD INTREE (0x7bc00000,0x00000000)},
{VT_exponent,22,0x3a92d4 ,DOUBLEWITHTWODWORD INTREE (0x7bd00000,0x00000000)},
{VT_exponent, 22,0x3a92d5 , DOUBLEWI THTWODWORD I NTREE (0x7be00000 , 0x00000000) } ,
{VT_exponent,22,0x3a92d6 ,DOUBLEWI THTWODWORD INTREE (0x7b¥00000,0x00000000)},
{VT_exponent,22,0x3a92d7 ,DOUBLEWITHTWODWORD INTREE (0x7c000000,0x00000000)},
{VT_exponent,22,0x3a92d8,DOUBLEWITHTWODWORD INTREE (0x7c100000,0x00000000)},
{VT_exponent, 22 ,0x3a92d9 , DOUBLEWI THTWODWORD I NTREE (0x7c200000 , 0x00000000) } ,

292 © 1SO 2008 — All rights reserved

{VT_exponent,22,0x3a92da,DOUBLEWITHTWODWORD INTREE (0x7c300000,0x00000000)},
{VT_exponent,22,0x3a92db ,DOUBLEWITHTWODWORD INTREE (0x7c400000,0x00000000)},
{VT_exponent,22,0x3a92dc,DOUBLEWI THTWODWORD INTREE (0x7c500000,0x00000000) },
{VT_exponent,22,0x3a92dd ,DOUBLEWITHTWODWORD INTREE (0x7c600000,0x00000000)},
{VT_exponent,22,0x3a92de ,DOUBLEWI THTWODWORD INTREE (0x7c700000,0x00000000)},
{VT_exponent,22,0x3a92df,DOUBLEWITHTWODWORD INTREE (0x7c800000 ,0x00000000)},
{VT_exponent,22,0x3a92e0,DOUBLEWITHTWODWORD INTREE (0x7c900000,0x00000000)},
{VT_exponent,22,0x3a92el,DOUBLEWITHTWODWORD INTREE (0x7ca00000,0x00000000)},
{VT_exponent,22,0x3a92e2,DOUBLEWI THTWODWORD INTREE (0x7cb00000,0x00000000) },
{VT_exponent,22,0x3a92e3,DOUBLEWITHTWODWORD INTREE (0x7cc00000,0x00000000)},
{VT_exponent,22,0x3a92e4 ,DOUBLEWI THTWODWORD INTREE (0x7cd00000,0x00000000)},
{VT_exponent,22,0x3a92e5,DOUBLEWITHTWODWORD INTREE (0x7ce00000 ,0x00000000)},
{VT_exponent,22,0x3a92e6 ,DOUBLEWI THTWODWORD INTREE (0x7cf00000,0x00000000)},
{VT_exponent,22,0x3a92e7 ,DOUBLEWITHTWODWORD INTREE (0x7d000000,0x00000000)},
{VT_exponent,22,0x3a92e8,DOUBLEWI THTWODWORD INTREE (0x7d100000,0x00000000)},
{VT_exponent,22,0x3a92e9,DOUBLEWITHTWODWORD INTREE (0x7d200000,0x00000000)},
{VT_exponent,22,0x3a92ea, DOUBLEWI THTWODWORD INTREE (0x7d300000,0x00000000)},
{VT_exponent,22,0x3a92eb,DOUBLEWITHTWODWORD INTREE (0x7d400000,0x00000000)},
{VT_exponent,22,0x3a92ec, DOUBLEWI THTWODWORD INTREE (0x7d500000,0x00000000) },
{VT_exponent,22,0x3a92ed ,DOUBLEWITHTWODWORD INTREE (0x7d600000 ,0x00000000) },
{VT_exponent,22,0x3a92ee ,DOUBLEWI THTWODWORD INTREE (0x7d700000,0x00000000)},
{VT_exponent,22,0x3a92ef,DOUBLEWITHTWODWORD INTREE (0x7d800000 ,0x00000000)},
{VT_exponent,22,0x3a92f0,DOUBLEWI THTWODWORD INTREE (0x7d900000,0x00000000)},
{VT_exponent,22,0x3a92f1,DOUBLEWITHTWODWORD INTREE (0x7da00000,0x00000000)},
{VT_exponent,22,0x3a92f2,DOUBLEWI THTWODWORD INTREE (0x7db00000,0x00000000)},
{VT_exponent,22,0x3a92f3,DOUBLEWI THTWODWORD INTREE (0x7dc00000,0x00000000)},
{VT_exponent,22,0x3a92f4 ,DOUBLEWITHTWODWORD INTREE (0x7dd00000,0x00000000)},
{VT_exponent,22,0x3a92f5,DOUBLEWI THTWODWORD INTREE (0x7de00000,0x00000000)},
{VT_exponent,22,0x3a92f6,DOUBLEWI THTWODWORD INTREE (0x7df00000,0x00000000)},
{VT_exponent,22,0x3a92f7,DOUBLEWITHTWODWORD INTREE (0x7e000000,0x00000000)},
{VT_exponent,22,0x3a92f8,DOUBLEWI THTWODWORD INTREE (0x7e100000,0x00000000)},
{VT_exponent,22,0x3a92f9,DOUBLEWITHTWODWORD INTREE (0x7e€200000,0x00000000)},
{VT_exponent,22,0x3a92fa,DOUBLEWITHTWODWORD INTREE (0x7e300000,0x00000000)},
{VT_exponent,22,0x3a92fb,DOUBLEWITHTWODWORD INTREE (0x7e400000,0x00000000)},
{VT_exponent,22,0x3a92fc,DOUBLEWITHTWODWORD INTREE (0x7e500000,0x00000000)},
{VT_exponent,22,0x3a92fd,DOUBLEWITHTWODWORD INTREE (0x7e600000,0x00000000)},
{VT_exponent,22,0x3a92fe ,DOUBLEWI THTWODWORD INTREE (0x7e700000,0x00000000)},
{VT_exponent,22,0x3a92ff,DOUBLEWI THTWODWORD INTREE (0x7e800000,0x00000000)},
{VT_exponent,22,0x3a95a0 ,DOUBLEWITHTWODWORD INTREE (0x7e900000 ,0x00000000)},
{VT_exponent,22,0x3a95al,DOUBLEWITHTWODWORD INTREE (0x7ea00000,0x00000000)},
{VT_exponent, 22,0x3a95a2 , DOUBLEWI THTWODWORD I NTREE (0x7eb00000 , 0x00000000) },
{VT_exponent,22,0x3a95a3,DOUBLEWI THTWODWORD INTREE (0x7ec00000,0x00000000)},
{VT_exponent, 22,,0x3a95a4 , DOUBLEWI THTWODWORD INTREE(0x7ed00000, 0x00000000)} ,
{VT_exponent,22,0x3a95a5,DOUBLEWI THTWODWORD INTREE (0x7ee00000,0x00000000)},
{VT_exponent,22,0x3a95a6 ,DOUBLEWITHTWODWORD INTREE (0x7ef00000,0x00000000)},
{VT_exponent,22,0x3a95a7 ,DOUBLEWITHTWODWORD INTREE (0x7¥000000,0x00000000)},
{VT_exponent,22,0x3a95a8,DOUBLEWI THTWODWORD INTREE (0x7¥100000,0x00000000)},
{VT_exponent,22,0x3a95a9,DOUBLEWITHTWODWORD INTREE (0x7$200000,0x00000000)},
{VT_exponent,22,0x3a95aa, DOUBLEWITHTWODWORD INTREE (0x7f300000,0x00000000)},
{VT_exponent,22,0x3a95ab ,DOUBLEWITHTWODWORD INTREE (0x7f400000,0x00000000)},
{VT_exponent, 22, 0x3a95ac , DOUBLEWI THTWODWORD I NTREE (0x 7500000, 0x00000000) },
{VT_exponent,22,0x3a95ad ,DOUBLEWITHTWODWORD INTREE (0x7¥600000,0x00000000)},
{VT_exponent,22,0x3a95ae ,DOUBLEWITHTWODWORD INTREE (0x7 700000 ,0x00000000)},
{VT_exponent,22,0x3a95af,DOUBLEWI THTWODWORD INTREE (0x7 800000 ,0x00000000)},
{VT_exponent,22,0x3b8fe0,DOUBLEWITHTWODWORD INTREE (0x7¥900000,0x00000000)},
{VT_exponent,22,0x3b8fel,DOUBLEWITHTWODWORD INTREE (0x7fa00000,0x00000000)},
{VT_exponent, 22, 0x3b8fe2, DOUBLEWI THTWODWORD I NTREE (0x7fb00000 , 0X00000000) },
{VT_exponent,22,0x3b8fe3,DOUBLEWI THTWODWORD INTREE (0x7fc00000,0x00000000)},
{VT_exponent,21,0x68e90,DOUBLEWITHTWODWORD INTREE (0x7fd00000,0x00000000)},
{VT_exponent,21,0x68e91 , DOUBLEWI THTWODWORD INTREE (0x7fe00000 ,0x00000000)},
{VT_exponent, 21,0x68e98 , DOUBLEWI THTWODWORD INTREE (0x7FF80000 ,0x00000000) },

© IS0 2008 — Al rights reserved 293

}; 7/ End of acofdoe array

294 © 1SO 2008 — All rights reserved

11.18 Procedure for WriteDouble

WriteDouble uses the array defined in Data definition for double storage to find common floating point
values for CAD data.

/* Internal definitions for floating point data */
union ieee754_double

double d;
/* This is the IEEE 754 double-precision format. */
struct
{
if defined(PRC_BIG_ENDIAN)
unsigned int negative:1;
unsigned int exponent:11;
/* Together these comprise the mantissa. */
unsigned int mantissa0:20;
unsigned int mantissal:32;
endif
if defined(PRC_LITTLE_ENDIAN)
/* Together these comprise the mantissa. */
unsigned int mantissal:32;
unsigned int mantissa0:20;
unsigned int exponent:11;
unsigned int negative:1l;
endif
} ieee;

¥

// Macros for LITTLE ENDIAN machines

#if defined(PRC_LITTLE_ENDIAN)

define DOUBLEWITHTWODWORD(upper,lower) lower,upper
define UPPERPOWER 1

#

define LOWERPOWER ('UPPERPOWER)
define NEXTBYTE(pbd) ((pbd)--)
define PREVIOUSBYTE(pbd) ((pbd)++)
define MOREBYTE(pbd,pbend) ((pbd)>=(pbend))
define OFFSETBYTE(pbd,offset) ((pbd)-=offset)
define BEFOREBYTE(pbd) ((pbd)+1)
define DIFFPOINTERS(p1,p2) ((unsigned) ((p2)-(p1)))
define SEARCHBYTE(pbstart,b,nb) (unsigned char *)memchr((pbstart), (b),(nb))
define BYTEAT(pb,1) *((pb)+(i1))

// Macros for BIG ENDIAN machines
#elif defined(PRC_BIG_ENDIAN)

define DOUBLEWITHTWODWORD(upper,lower) upper, lower

define UPPERPOWER)

define LOWERPOWER (YUPPERPOWER)

define NEXTBYTE(pbd) ((pbd)++)

define PREVIOUSBYTE(pbd) ((pbd)--)

define MOREBYTE(pbd,pbend) ((pbd)<=(pbend))
define OFFSETBYTE(pbd,offset) ((pbd)+=offset)
define BEFOREBYTE(pbd) ((pbd)-1)

define DIFFPOINTERS(p1,p2) ((PD-((p2))

define SEARCHBYTE(pbstart,b,nb) (unsigned char *)memrchr((pbstart), (b),(nb))
define BYTEAT(pb,i) *((pb)-(i))

© IS0 2008 — Al rights reserved 295

#else
error "Big/Little endian to be defined"
#endif

// Common macros and types
#define MAXLENGTHFORCOMPRESSEDTYPE ((22+1+1+4+6*(1+8))+7)/8

#define NEGATIVE(d) (((union ieee754_double *)&(d))->ieee.negative)
#define EXPONENT(d) (((union ieee754_double *)&(d))->ieee.exponent)
#define MANTISSAO(d) (((union ieee754_double *)&(d))->ieee.mantissa0)
#define MANTISSA1(d) (((union ieee754_double *)&(d))->ieee.mantissal)

typedef unsigned char PRCbyte;
typedef unsigned short PRCword;
typedef unsigned PRCdword;

static PRCdword
stadwZero[2]={DOUBLEWI THTWODWORD(0x00000000 ,0x00000000)} ,
stadwNegativeZero[2]={DOUBLEWITHTWODWORD (0x80000000,0x00000000)} ;

/* End of Internal definitions */

// Internally used functions
/* Internal functions */
static int stCOFDOECompare(const void* pcofdoel,const void* pcofdoe2)

{
return(EXPONENT(((const sCodageOfFrequentDoubleOrExponent *)pcofdoel)-
>u2uod.Value)-
EXPONENT (((const sCodageOfFrequentDoubleOrExponent *)pcofdoe2)-
>u2uod.Value));

¥

#if defined(PRC_BIG_ENDIAN)
static void *memrchr(const void *buf,int c,size_t count)

{

unsigned char
*pcBuffer=(unsigned char *)buf,
*pcBufferEnd=pcBuffer-count;

for(;pcBuffer>pcBufferkEnd;pcBuffer--)
if(*pcBuffer==c)
return(pcBuffer);
return(NULL);
3
#endif
/* End of internal functions */
define STAT_V
define STAT_DOUBLE
define add_bits AddBits
void WriteDouble(double value)
{

union ieee754_double *pid=(union ieee754 double *)&value;
int

296 © IS0 2008 — Al rights reserved

I,
fSaveAtEnd;
PRCbyte
*pb,
*pbStart,
*pbStop,
*pbEnd,
*pbResult,
bSaveAtEnd;
sCodageOfFrequentDoubleOrExponent
cofdoe,
*pcofdoe;

cofdoe.u2uod.Value=value;

pcofdoe = (sCodageOfFrequentDoubleOrExponent *)bsearch(
&cofdoe,
acofdoe,
sizeof(acofdoe)/sizeof(pcofdoe[0]),
sizeof(pcofdoe[0]),
StCOFDOECompare);

while(pcofdoe>acofdoe &&
EXPONENT (pcofdoe->u2uod.Value)==EXPONENT ((pcofdoe-1)->u2uod.Value))
pcofdoe--;

while(pcofdoe->Type==VT_double)

if(fabs(value)==pcofdoe->u2uod.Value)
break;
pcofdoe++;

}

for(i=1<<(pcofdoe->NumberOfBits-1);i>=1;i>>=1)
add_bits((pcofdoe->Bits&i)!=0,1 STAT_V STAT _DOUBLE);

if

Imemcmp(&value, stadwZero,sizeof(value)) ||
Imemcmp(&value, stadwNegativeZero,sizeof(value))

)

return;
add_bits(pid->ieee.negative,1l STAT_V STAT_DOUBLE);

iT(pcofdoe->Type==VT_double)
return;

if(pid->ieee.mantissa0==0 && pid->ieee.mantissal==0)

add_bits(0,1 STAT_V STAT_DOUBLE);
return;

b
add_bits(1,1 STAT V STAT DOUBLE);

i1f defined(PRC_LITTLE_ENDIAN)
pb=((PRCbyte *)&value)+6;
elif defined(PRC_BIG_ENDIAN)
pb=((PRCbyte *)&value)+1;
endif

© IS0 2008 — All rights reserved 297

add_bits((*pb)&Ox0f,4 STAT V STAT DOUBLE);

NEXTBYTE(pb) ;
pbStart=pb;
if defined(PRC_LITTLE_ENDIAN)
pbEnd=
pbStop= ((PRCbyte *)&value);
elif defined(PRC_BIG_ENDIAN)
pbEnd=
pbStop= ((PRCbyte *)(&value+1))-1;
endif

1F((fSaveAtEnd=(*pbStop!=*BEFOREBYTE(pbStop)))!=0)
bSaveAtEnd=*pbEnd;
PREVIOUSBYTE(pbStop) ;

whi le(*pbStop==*BEFOREBYTE(pbStop))
PREVI10USBYTE(pbStop) ;

for (;MOREBYTE(pb, pbStop) ; NEXTBYTE(pb))
{
if(pb!=pbStart &&
(pbResult=SEARCHBYTE(
BEFOREBYTE(pb) ,*pb,DIFFPOINTERS(pb,pbStart))) =NULL)

add_bits(0,1 STAT_V STAT_DOUBLE);
add_bits(DIFFPOINTERS(pb, pbResult),3 STAT_V STAT_DOUBLE);
b

else

add_bits(1,1 STAT V STAT_DOUBLE);
add_bits(*pb,8 STAT_V STAT_DOUBLE);
b
3

i T(!MOREBYTE(BEFOREBYTE (pbEnd) , pbStop))

{
if(fSaveAtEnd)
{

add_bits(0,1 STAT V STAT DOUBLE);

add_bits(6,3 STAT V STAT DOUBLE);:

add_bits(bSaveAtEnd,8 STAT V STAT DOUBLE);
3

else

{
add_bits(0,1 STAT V STAT DOUBLE);

add_bits(0,3 STAT V STAT DOUBLE):

}

else

i F((pbResult=SEARCHBYTE(
BEFOREBYTE(pb) , *pb, DIFFPOINTERS (pb , pbStart))) 1=NULL)

add_bits(0,1 STAT V STAT DOUBLE);
add_bits(DIFFPOINTERS(pb, pbResult),3 STAT V STAT DOUBLE);
b

else

add_bits(1,1 STAT V STAT_DOUBLE);

298 © IS0 2008 — Al rights reserved

add_bits(*pb,8 STAT V STAT DOUBLE);
b
b

12 Tessellation Compression Support

12.1 General

The following two sections describe numerical techniques used for compressed tessellation data (section 7.8).

12.2Huffman Algorithm

Huffman coding is an algorithm used for lossless data compression (see Bibliography). The particular
implementation of this algorithm used in the PRC format is described below.

The Hufffman algorithm used can support char (1 byte) or short (2 bytes) arrays as input, and compresses
them using a number of bits which depends on maximum values that it contains. To compact data, a huffman
tree is built in order to store the highest frequent elements with the smallest code. Each input value is located
on a leaf.

Example : with the input, {1,3,5,7,7,9,5,3,3}, the following tree is build.

Value | Code Code Length
3 00 2
7 01 2
5 10 2
1 110 3
9 111 3

© IS0 2008 — Al rights reserved 299

This version of PRC imposes that code length is limited to 32.

The pseudo code below describes how the binary tree is stored in a bit field :

#include <string.h>

void HuffmanTreeCalculation(

char* pcArray,

unsigned uCharArraySize,
unsigned uNumberOfBitsForValues,
unsigned& uNumberOfLeaves,
unsigned& uMaxCodelLength,
unsigned*&puLeafValues,
unsigned*&pulLeafCodelLength,
unsigned*&puLeafCodeValues);

static bool* AddBitlnArray(
bool* pbBitArray,

bool bVvalue,

unsigned& uMaxSize,
unsigned& uSize)

3

if (uSize == uMaxSize)

{

uMaxSize+=uMaxSize/10;

bool* pbNew = new bool[uMaxSize];

memcpy (pbNew, pbBitArray,uSize*sizeof(bool));
delete [] pbBitArray;

pbBitArray=pbNew;

3
pbBitArray[uSize]=bValue;
uSize++;

return pbBitArray;

// uNumberOfBitsForValues is an input of the Huffman algorithm.
// For instance, when writing Edge_status_array in XXX4.7.8.7,
// this number is equal to 2.

void Huffman(

char* pcArray,

unsigned uCharArraySize,

unsigned uNumberOfBitsForValues,

unsigned*& puHuffmanArray,

unsigned& uHuffmanArraySize)

{

300

unsigned uNumberOfLeaves,

uMaxCodeLength,
*puLeafValues,
*puLeafCodelLength,
*puLeafCodeValues;

HuffmanTreeCalculation(

pcArray,
uCharArraySize,
uNumberOfBitsForValues,
uNumberOfLeaves,
uMaxCodeLength,

© ISO 2008 — All rights reserved

puLeafvalues,
puLeafCodelLength,
puLeafCodeValues);

// here we have to allocate a dynamic array growing accordingly
unsigned uSize=0,uMaxSize=24*uCharArraySize;
bool *pbBitArray = new bool[uMaxSize];

// writing bit-by-bit the number of leaves

unsigned u,Vv;

for(u=0; u < uNumberOfBitsForValues + 1; u++)

pbBitArray = AddBitInArray(

pbBitArray,
uNumberOfLeaves & (1<<u) ? true : false,
uMaxSize,
uSize);

// writing bit-by-bit the max code length on 8 bits
for(u=0; u < 8; u++)
pbBitArray = AddBitInArray(
pbBitArray,
uMaxCodelLength &(1<<u) ? true : false,
uMaxSize,
uSize);

for(v = 0; v < uNumberOfLeaves; v++)

{
// writing leaf value (same values as in pcArray, in different order)
for(u=0; u < uNumberOfBitsForValues; u++)
pbBitArray = AddBitInArray(
pbBitArray,
puLeafValues[v] &(1<<u) ? true : false,
uMaxSize,
uSize);
// writing leaf code length
for(u=0; u < 8; u++)
pbBitArray = AddBitlnArray(
pbBitArray,
puLeafCodeLength[v] &(1<<u) ? true : false,
uMaxSize,
uSize);
// writing leaf code value
for(u=0; u < puLeafCodeLength[v]; u++)
pbBitArray = AddBitInArray(
pbBitArray,
puLeafCodeValues[v] &(1<<u) ? true : false,
uMaxSize,
uSize);
3

unsigned uBitslInUnsigned = sizeof(unsigned) * 8;
uHuffmanArraySize = uSize % uBitslnUnsigned ?
(uSize / uBitslInUnsigned)+1 : uSize / uBitslnUnsigned;

puHuffmanArray = new unsigned[uHuffmanArraySize];
unsigned* puCurrent=puHuffmanArray;

unsigned uTot=0;
for (u=0;u<uHuffmanArraySize-1;u++,puCurrent++)

© IS0 2008 — Al rights reserved 301

*puCurrent=0;
for (v=0;v<uBitslInUnsigned;v++,uTot++)
*puCurrent |= (pbBitArray[uTot] ? 1 : 0) << v;
¥

v=0;

*puCurrent=0;

for(u = uBitslInUnsigned*(uHuffmanArraySize-1);u < uSize; u++, uTot++, v++)
*puCurrent |= (pbBitArray[uTot] ? 1 : 0) << v;

delete [] pbBitArray;

Then the output unsigned integer array is used by WriteCharacterArray or WriteShortArray as described in
section 11.

12.3 Basis pseudocode

This pseudo code describes basic calculation functions which have to be performed with IEEE standard (see
Bibliography). All basic calculations below must be performed using floating-point processors working on 64
bits precision. All values, types and macros below belong to IEEE standard for single or double precision as
well.

#include <float.h>
#include <math.h>

// For compilation on little-endian machines;
// please define PRC_BIG_ENDIAN otherwise
define PRC_LITTLE_ENDIAN

class PrcPt

double m_fx;
double m_fy;
double m_fz;
public :
PrcPt(Q) {3

PrcPt(double fx, double fy, double fz) :
m_fx(fx), m_fy(fy), m_fz(fz) {}

PrcPt(const PrcPt& sPrcPt) :
m_fx(sPrcPt.m_fx), m_Ffy(sPrcPt.m_fy), m_fz(sPrcPt.m_fz) {}
void Set(double fx, double fy, double fz)
{mfx=*Ffx; m fy = fy; m_fz = fz; }
double Dot(const PrcPt & sPt) const
return (m_fx*sPt.m_fx)+(m_Ffy*sPt.m_fy)+(m_fz*sPt.m_Fz);

3
double LengthSquared()
{

}

return (m_Hx*m_fx + m_fy*m_fFfy + m_fz*m_¥z);

302 © IS0 2008 — Al rights reserved

friend PrcPt operator + (const PrcPt& a, const PrcPt& b)
return PrcPt(a.m_fx+b.m_fx, a.m_Ffy+b.m_fy, a.m_fz+b.m_fz);

friend PrcPt operator - (const PrcPt& a)

{

return PrcPt(-a.m_fx, -a.m_fy, -a.m_fz);

friend PrcPt operator - (const PrcPt& a, const PrcPt& b)

{
return PrcPt(a.m_fx-b.m_fx, a.m fy-b.m_fy, a.m_fz-b.m_¥z);
3
friend PrcPt operator * (const PrcPt& a, const double d)
{
return PrcPt(a.m_fx * d, a.m_fy * d, a.m_fz * d);
3
friend PrcPt operator * (const double d, const PrcPt& a)
{

return PrcPt(a.m_fx*d, a.m_fy*d, a.m_fz*d);
friend PrcPt operator / (const PrcPt& a, const double d)
{

return PrcPt(a.m_fx/d, a.m_fy/d, a.m_fz/d);

3
friend PrcPt operator * (const PrcPt& a, const PrcPt& b)

{
return PrcPt((a.m_fy*b.m_fz)-(a.m_fz*b.m_Ffy),
(a.-m_fz*b.m_fx)-(a.m_Ffx*b.m_*Fz),
(a-m_fx*b.m_fFfy)-(a.m_Ffy*b.m_Fx));
T

double Length(Q);
int Unitize();

int MakeOrthoRep(PrcPt& sY, PrcPt& sz);

int AngleBetween(const PrcPt& sPt,double& dAngleRadians) const;
15

union ieee754_float

float f;
/* This is the IEEE 754 float-precision format. */
struct

{

#if defined(PRC_BIG_ENDIAN)
unsigned int negative:l;
unsigned int exponent:8;
unsigned int mantissa:23;

#elif defined(PRC_LITTLE_ENDIAN)
unsigned int mantissa:23;
unsigned int exponent:8;
unsigned int negative:l;

#else

error "Big/Little endian to be defined"”

#endif

} ieee;

X

© IS0 2008 — Al rights reserved 303

double PrcPt::Length(Q)

{
ieee754 float fSomme;
fSomme.F = (Ffloat) (m_fx*m_fx + m_fy*m_Ffy + m_fz*m_fFz);
double dSquared = (double) fSomme.f;
if(fSomme. ieee.exponent > 127)
fSomme. ieee.exponent = (fSomme.ieee.exponent - 127) /2 + 127;
double dX_i;
double dX_0 = (double) fSomme.f;
unsigned int uCount = 0;
while(uCount != 100) {
dX_i = 0.5 * (dX_0 + dSquared 7/ dX_0);
if((double) dX_ i == (double) dX_0) dX 0 = dX_ i;
uCount++;
} 5
if(uCount == 100) return (double) -1.0;
return (double) dX_i;
b
int PrcPt::Unitize()
{
double fLength = Length(Q);
if(fLength < FLT_EPSILON) return -1;
m_fx = m_fx/fLength;
m_fy = m_fy/flLength;
m_fz = m_fz/flLength;
return O;
b

int PrcPt::AngleBetween(
const PrcPt & sOther,double &JAngleRadians) const
{

PrcPt sV1 = *this;
PrcPt sV2 = sOther;
double dViLen = sV1.Length(Q);
double dV2Len = sV2.Length(Q);
if(dviLen < FLT_EPSILON || dV2Len < FLT_EPSILON)return 1;
sVl = sV1 / dViLen;
sV2 = sV2 / dV2Len;
double dDot = sV1.Dot(sV2);
if (dDot > 1.0-1le-12)
dDot = 1.0;
else if (dDot < -1.0+1le-12)
dDot = -1.0;
dAngleRadians = acos(dDot);
return O;

int PrcPt::MakeOrthoRep(PrcPt& sY, PrcPt& sZ)
{

PrcPt sX = *this;
if(sX.Unitize())
return -1;
sY.Set(0,1.0,0);

sZ = sX * sY;

if(sz.Unitize())

{
sY.Set(1.0,0,0);
sSZ = sX * sY;
if(sz.Unitize())

304 © IS0 2008 — Al rights reserved

© ISO 2008 — All rights reserved 305

Bibliography

D.A. Huffman, “A method for the construction of minimum-redundancy codes®, Proceedings of the I.R.E.,
septembre 1952, pp 1098-1102

Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point Arithmetic(IEEE 754-
1985)

Internet RFCs 1950, ZLIB Compressed Data Format Specification, and 1951, DEFLATE Compressed Data
Format Specification

1SO 10303, Industrial automation systems and integration — Product data representation and exchange

306 © IS0 2008 — Al rights reserved

	Master_090618_Submit_PRC_Spec_Draft.pdf
	Copyright notice
	Scope
	Normative references
	Terms and definitions
	Document Syntax Conventions
	Conventions
	Example Structure

	PRC file concepts
	The PRC file
	Versioning
	Unique Identifiers
	General
	File Structure
	Base Entities
	CAD systems

	Current Data Values
	UserData
	Units
	Tolerances
	Compressed File Sections
	Compressed Geometry
	Compressed Tessellation

	PRC File Contents
	FileHeader
	General
	FileStructureDescription
	UncompressedFiles

	FileStructure
	General
	FileStructureHeader
	FileStructureSchema

	PRC Schema
	General
	Entity_schema_definition

	Base Entities
	General
	Abstract Root Types
	Entity Types
	PRC_TYPE_ROOT
	PRC_TYPE_ROOT_PRCBase
	General
	ContentPRCBase
	AttributeData
	Name

	PRC_TYPE_ROOT_PRCBaseWithGraphics
	General
	GraphicsContent
	Layer_index represents the layer the entity lies on. It should have a value less than 65535.

	PRC_TYPE_ROOT_PRCBaseNoReference

	Structure and Assembly
	Entity Types
	PRC_TYPE_ASM
	PRC_TYPE_ASM_ModelFile
	General
	ProductOccurrenceReference

	PRC_TYPE_ASM_FileStructure
	PRC_TYPE_ASM_FileStructureGlobals
	General
	FileStructureInternalGlobalData
	General
	MarkupSerializationHelper
	General
	FontKeySameFont

	RgbColor

	PRC_TYPE_ASM_FileStructureTree
	PRC_TYPE_ASM_FileStructureTessellation
	PRC_TYPE_ASM_FileStructureGeometry
	General
	FileStructureExactGeometry

	PRC_TYPE_ASM_FileStructureExtraGeometry
	General
	ExtraGeometry
	GeometrySummary
	General
	BodyInformation

	ContextGraphics
	General

	Number_of_treat_type corresponds to the number of entity types for which GraphicsInformation is stored (currently, only PRC_TYPE_TOPO_Face is supported, so if there are graphics on some faces, Number_of_treat_type is 1, else it is 0).
	GraphicsInformation
	ElementInformation
	ElementGraphicsBehavior

	PRC_TYPE_ASM_ProductOccurrence
	General
	ReferencesOfProductOcurrence
	General
	SaveFileIdentifier

	ProductInformation
	General
	PRCProductFlag
	EPRCProductLoadStatus

	MarkupData
	AnnotationEntities

	PRC_TYPE_ASM_PartDefinition
	PRC_TYPE_ASM_Filter
	General
	ContentLayerFilterItems
	ContentEntityFilterItems

	CompressedUniqueId

	Miscellaneous Data
	Entity Types
	PRC_TYPE_MISC
	PRC_TYPE_MISC_Attribute
	General
	AttributeEntry
	AttributeKey/Value

	PRC_TYPE_MISC_EntityReference
	PRC_TYPE_MISC_MarkupLinkedItem
	General
	ContentExtendedEntityReference

	PRC_TYPE_MISC_ReferenceOnPRCBase
	PRC_TYPE_MISC_ReferenceOnTopology
	General
	AdditionalTargetData
	ReferenceOnTopology Entities

	PRC_TYPE_MISC_CartesianTransformation
	PRC_TYPE_MISC_GeneralTransformation
	ContentEntityReference
	General
	ReferenceData

	Transformation
	General
	Translation
	Rotation
	NonOrtho
	Scale
	NonUniformScalePart
	HomogeneousPart

	Graphics
	Entity Types
	PRC_TYPE_GRAPH
	PRC_TYPE_GRAPH_Style
	PRC_TYPE_GRAPH_Material
	PRC_TYPE_GRAPH_Picture
	General
	EPRCPictureDataFormat

	PRC_TYPE_GRAPH_TextureApplication
	PRC_TYPE_GRAPH_TextureDefinition
	PRC_TYPE_GRAPH_TextureTransformation
	PRC_TYPE_GRAPH_LinePattern
	PRC_TYPE_GRAPH_FillPattern
	PRC_TYPE_GRAPH_DottingPattern
	PRC_TYPE_GRAPH_HatchingPattern
	PRC_TYPE_GRAPH_SolidPattern
	PRC_TYPE_GRAPH_VpicturePattern
	PRC_TYPE_GRAPH_AmbientLight
	PRC_TYPE_GRAPH_PointLight
	PRC_TYPE_GRAPH_DirectionalLight
	PRC_TYPE_GRAPH_SpotLight
	PRC_TYPE_GRAPH_SceneDisplayParameters
	PRC_TYPE_GRAPH_Camera

	Representation Items
	Entity Types
	PRC_TYPE_RI
	PRC_TYPE_RI_RepresentationItem
	General
	RepresentationItemContent

	PRC_TYPE_RI_BrepModel
	PRC_TYPE_RI_Curve
	PRC_TYPE_RI_Direction
	PRC_TYPE_RI_Plane
	PRC_TYPE_RI_PointSet
	PRC_TYPE_RI_PolyBrepModel
	PRC_TYPE_RI_PolyWire
	PRC_TYPE_RI_Set
	PRC_TYPE_RI_CoordinateSystem

	Markup
	Entity Types
	PRC_TYPE_MKP
	PRC_TYPE_MKP_View
	PRC_TYPE_MKP_Markup
	PRC_TYPE_MKP_Leader
	PRC_TYPE_MKP_AnnotationItem
	PRC_TYPE_MKP_AnnotationSet
	PRC_TYPE_MKP_AnnotationReference

	Tessellation
	Entity Types
	PRC_TYPE_TESS
	PRC_TYPE_TESS_Base
	ContentBaseTessData
	PRC_TYPE_TESS_3D
	General
	Example: triangle
	Example : triangle fan
	Example: triangle strip
	PRC Tessellation Types

	PRC_TYPE_TESS_Face
	General
	Face Wire Tessellation Flags

	PRC_TYPE_TESS_3D_Wire
	General
	VertexColors
	ColorData:
	ColorDataRemainder
	3D Wire Tess Flags

	PRC_TYPE_TESS_Markup
	General
	Markup Flags
	Markup Tessellation Behavior
	Description of the first Markup code.
	Description of the second Markup code.
	Table of entities
	Block and entity modes
	Description of a block.
	Description of modes used in block definitions.
	Description of entity modes.

	Entity description
	General
	Polyline
	Triangles
	Quads
	Polygon
	Points
	Face view mode
	Frame draw mode
	Fixed size mode
	Matrix mode
	Symbol
	Color
	Line style mode
	Font
	Text
	Line width mode
	Cylinder
	Image
	Pattern

	PRC_TYPE_TESS_3D_COMPRESSED
	Mesh Traversal
	Mesh points and triangles:
	Mesh Normal Description
	Mesh Normal Construction
	Mesh texture structure
	The combination of All_face_has_texture and Face_has_texture determines whether a face has textures. Texture_data contains information to retrieve UV textures‘ parameters. See CompressedTextureParameter for more details.
	Mesh Attribute structure
	Description of the data written to the file
	CompressedTextureParameter
	BinaryTextureData

	Topology
	Entity Types
	PRC_TYPE_TOPO
	PRC_TYPE_TOPO_Context
	PRC_TYPE_TOPO_Item
	PRC_TYPE_TOPO_MultipleVertex
	PRC_TYPE_TOPO_UniqueVertex
	PRC_TYPE_TOPO_WireEdge
	PRC_TYPE_TOPO_Edge
	PRC_TYPE_TOPO_CoEdge
	PRC_TYPE_TOPO_Loop
	General
	CoedgesInLoop

	PRC_TYPE_TOPO_Face
	PRC_TYPE_TOPO_Shell
	General
	FacesInShell

	PRC_TYPE_TOPO_Connex
	PRC_TYPE_TOPO_Body
	ContentBody
	ContentWireEdge
	PRC_TYPE_TOPO_SingleWireBody
	PRC_TYPE_TOPO_BrepData
	PRC_TYPE_TOPO_SingleWireBodyCompress
	PRC_TYPE_TOPO_BrepDataCompress
	General
	MultipleCompressedConnex
	CompressedConnex
	CompressedShell
	Compressed Face
	General
	Enumeration of compressed entity types
	PRC_HCG_IsoPlane
	PRC_HCG_IsoCylinder
	PRC_HCG_IsoTorus
	PRC_HCG_IsoSphere
	PRC_HCG_IsoCone
	A conforming PRC Reader should recognize accordingly lines and circles from ContentCompressedFace to reconstruct a cone surface.
	PRC_HCG_AnaPlane
	PRC_HCG_AnaCylinder
	PRC_HCG_AnaTorus
	PRC_HCG_AnaSphere
	PRC_HCG_AnaCone
	PRC_HCG_AnaGenericFace
	PRC_HCG_IsoNurbs
	General
	IsoNurbsTrimCurve
	IsoNurbsTrimCrv
	General
	IsoNurbsTrimCrvLine
	IsoNurbsTrimCrvCircle

	PRC_HCG_AnaNurbs

	CompressedNurbs
	General
	CompressedMultiplicities
	CompressedControlPoints
	General
	nurbs_tolerance describes the tolerance used to approximate the original nurbs surface. It ensures that each point on the compressed nurbs surface is at a distance of the original surface less than nurbs_tolerance.
	InteriorCompressedControlPoints

	CompressedKnotVector
	General
	The knot vectors are always between 0 and 1. The multiplicities are stored as described in the PRC File Format Specification. See 7.9.20.6.2. U knots are treated first, then V. Three types of knot parameterization are considered.
	CompressedKnots
	CompressedKnot

	CompressedWeights

	ContentCompressedFace
	General
	ContentCompressedIsoFace
	ContentCompressedAnaFace
	General
	AnaFaceTrimLoop

	RefOrCompressedCurve
	CompressedCurve
	General
	PRC_HCG_Line
	PRC_HCG_Circle
	General
	ParticularCircle
	GeneralCircle

	PRC_HCG_BsplineHermiteCurve
	PRC_HCG_CompositeCurve
	StartEndData

	CompressedVertex
	CompressedPoint

	PRC_TYPE_TOPO_WireBody
	References
	General
	PtrCurve
	PtrSurface
	PtrTopology

	Curve
	Entity Types
	PRC_TYPE_CRV
	PRC_TYPE_CRV_Base
	General
	ContentCurve

	PRC_TYPE_CRV_Blend02Boundary
	PRC_TYPE_CRV_NURBS
	General
	ControlPointsNurbsCrv
	EPRCKnotType
	EPRCBsplineCurveForm
	EPRCExtendType

	PRC_TYPE_CRV_Circle
	PRC_TYPE_CRV_Composite
	CompositeSubCurve

	PRC_TYPE_CRV_OnSurf
	PRC_TYPE_CRV_Ellipse
	PRC_TYPE_CRV_Equation
	PRC_TYPE_CRV_Helix01
	General
	Type0HelixData
	Type1HelixData

	PRC_TYPE_CRV_Hyperbola
	PRC_TYPE_CRV_Intersection
	General
	CrossingPointsCrvIntersection
	EPRCIntersectionLimitType

	PRC_TYPE_CRV_Line
	PRC_TYPE_CRV_Offset
	PRC_TYPE_CRV_Parabola
	PRC_TYPE_CRV_PolyLine
	General
	PolyLinePoint

	PRC_TYPE_CRV_Transform

	Surface
	Entity Types
	PRC_TYPE_SURF
	PRC_TYPE_SURF_Base
	General
	ContentSurface

	PRC_TYPE_SURF_Blend01
	PRC_TYPE_SURF_Blend02
	PRC_TYPE_SURF_Blend03
	PRC_TYPE_SURF_NURBS
	General
	ControlPointsNurbsSurf
	EPRCSplineSurfaceForm

	PRC_TYPE_SURF_Cone
	PRC_TYPE_SURF_Cylinder
	PRC_TYPE_SURF_Cylindrical
	PRC_TYPE_SURF_Offset
	PRC_TYPE_SURF_Pipe
	PRC_TYPE_SURF_Plane
	PRC_TYPE_SURF_Ruled
	PRC_TYPE_SURF_Sphere
	PRC_TYPE_SURF_Revolution
	PRC_TYPE_SURF_Extrusion
	PRC_TYPE_SURF_FromCurves
	PRC_TYPE_SURF_Torus
	PRC_TYPE_SURF_Transform
	PRC_TYPE_SURF_Blend04

	Mathematical Operator
	Entity Types
	PRC_TYPE_MATH
	PRC_TYPE_MATH_FCT_1D
	PRC_TYPE_MATH_FCT_1D_Polynom
	PRC_TYPE_MATH_FCT_1D_Trigonometric
	PRC_TYPE_MATH_FCT_1D_Fraction
	PRC_TYPE_MATH_FCT_1D_ArctanCos
	PRC_TYPE_MATH_FCT_1D_Combination
	General
	CombinationFunctions

	PRC_TYPE_MATH_FCT_3D
	PRC_TYPE_MATH_FCT_3D_Linear
	PRC_TYPE_MATH_FCT_3D_NonLinear

	Other Data Classes
	Other data classes
	Parameter Range
	Infinite_param
	Interval
	Parameterization
	Domain
	UVParameterization

	BaseTopology
	BaseGeometry
	Basic types for geometry
	Vector2d
	Vector3d
	BoundingBox

	UserData
	UserDataStream
	UserDataSubSection

	Schema Definition
	General
	Enumeration of Schema Tokens
	Schema Processing
	EPRCSchema_Data_Boolean
	EPRCSchema_Data_Double
	EPRCSchema_Data_Character
	EPRCSchema_Data_Unsigned_Integer
	EPRCSchema_Data_Integer
	EPRCSchema_Data_String
	EPRCSchema_Father_Type
	EPRCSchema_ Vector_2D
	EPRCSchema_ Vector_3D
	EPRCSchema_Extent_1D
	EPRCSchema_Extent_2D
	EPRCSchema_Extent_3D
	EPRCSchema_Ptr_Type
	EPRCSchema_Ptr_Surface
	EPRCSchema_Ptr_Curve
	EPRCSchema_For
	EPRCSchema_SimpleFor
	EPRCSchema_If and EPRCSchema_Else
	EPRCSchema_Block_Start
	EPRCSchema_Block_Version
	EPRCSchema_Block_End
	EPRCSchema_Value_Declare
	EPRCSchema_Value_Set
	EPRCSchema_Value_DeclareAndSet
	EPRCSchema_Value
	EPRCSchema_Value_Constant
	EPRCSchema_Value_For
	EPRCSchema_Value_CurveIs3D
	EPRCSchema_Operator_MULT
	EPRCSchema_Operator_DIV
	EPRCSchema_Operator_ADD
	EPRCSchema_Operator_SUB
	EPRCSchema_Operator_LT
	EPRCSchema_Operator_LE
	EPRCSchema_Operator_GT
	EPRCSchema_Operator_GE
	EPRCSchema_Operator_EQ
	EPRCSchema_Operator_NEQ

	Schema Examples
	General
	An existing entity
	Existing PRC_TYPE_CRV_Polyline
	Add a field to existing entity
	Add a new curve
	Multiple revisions to an entity type

	Data Types for Physical File
	General
	Uncompressed Types
	General
	UncompressedFiles
	UncompressedBlock
	UncompressedUnsignedInteger

	Compressed Types
	General
	Bits
	Boolean
	Character
	CharacterArray
	FloatAsBytes
	String
	ShortArray
	Double
	DoubleWithVariableBitNumber
	Integer
	IntegerWithVariableBitNumber
	CompressedIntegerArray
	UnsignedInteger
	UnsignedIntegerWithVariableBitNumber
	CompressedIndiceArray
	NumberOfBitsThenUnsignedInteger
	This requires a special algorithm. See 11.15.

	CompressedEntityType

	I/O Algorithms
	GetNumberOfBitsUsedToStoreUnsignedInteger
	MakePortable32BitsUnsigned
	WriteBits
	WriteString
	WriteFloatAsBytes
	WriteCharacterArray
	This function allows for both direct storage, or storage after Huffman compression (see section Huffman Algorithm), as denoted by variable bIsCompressed. The strategy whether or not compressing is left outside the scope of the standard and can vary be...
	For instance, compression can be skipped systematically when the array size is lower than 5, since compressed strategy leads to write at least one unsigned integer.
	}

	WriteShortArray
	This function allows for both direct storage, or storage after Huffman compression (see section 12.2, Huffman Algorithm), as denoted by variable bIsCompressed. The strategy whether or not compressing is left outside the scope of the standard and can v...

	WriteCompressedIntegerArray
	WriteCompressedIndiceArray
	WriteUnsignedInteger
	WriteInteger
	WriteIntegerWithVariableBitNumber
	WriteUnsignedIntegerWithVariableBitNumber
	WriteDoubleWithVariableBitNumber
	WriteNumberOfBitsThenUnsignedInteger
	WriteCompressedEntityType
	WriteDouble
	General
	Data definition for double storage

	Procedure for WriteDouble

	Tessellation Compression Support
	General
	Huffman Algorithm
	Basis pseudocode

	Bibliography

