Elliptic Curve
Types
Functions
Detailed Description
- group a3d_crvellipse
Entity type is kA3DTypeCrvEllipse.
- Version
2.0
The canonical form is defined with an A3DMiscCartesianTransformationData, its origin being the center of the ellipse and its vector X being the axis corresponding to zero parameter and X radius. The implicit parameterization is an angle in radian in the range [0, 2PI].
A3DParameterizationData allows for reparameterization and trim.
Example of an elliptic arc
In this example, the ellipse is in the XY plane (and therefore has an identity transformation), with radii Rx and Ry and is restricted to the [ t0 , t1 ] interval. Assuming
m_dCoeffA
is 1.0 andm_dCoeffB
0.0 (which indicates a parameterization in radians), then t0=0 and t1=PI/2, t0 corresponds to the Cartesian coordinates (Rx,0,0) and t1 to (0,Ry,0).Note
The values of the
m_dXRadius
andm_dYRadius
members must be greater than 0.
Function Documentation
-
A3DStatus A3DCrvEllipseGet(const A3DCrvEllipse *pCrv, A3DCrvEllipseData *pData)
Populates the A3DCrvEllipseData structure.
- Version
2.0
- Return values:
A3D_INITIALIZE_NOT_CALLED –
A3D_INVALID_DATA_STRUCT_SIZE –
A3D_INVALID_DATA_STRUCT_NULL –
A3D_INVALID_ENTITY_NULL –
A3D_INVALID_ENTITY_TYPE –
A3D_CRV_CANNOT_ACCESS_CANONICAL –
A3D_SUCCESS –
- Returns:
A3D_SUCCESS
on success, or an error code on failure
-
A3DStatus A3DCrvEllipseCreate(const A3DCrvEllipseData *pData, A3DCrvEllipse **ppCrv)
Creates an A3DCrvEllipse from A3DCrvEllipseData structure.
- Version
2.0
- Return values:
A3D_INVALID_DATA_STRUCT_SIZE –
A3D_INVALID_DATA_STRUCT_NULL –
A3D_INTERVAL_INCONSISTENT_DATA –
A3D_SUCCESS –
- Returns:
A3D_SUCCESS
on success, or an error code on failure