################################# 3. HOOPS AI - Minimal ETL Demo ################################# This notebook demonstrates the core features of the HOOPS AI data engineering workflows: Key Components - **Schema-Based Dataset Organization**: Define structured data schemas for consistent data merging - **Parallel Task Decorators**: Simplify CAD processing with type-safe task definitions - **Generic Flow Orchestration**: Automatically handle task dependencies and data flow - **Automatic Dataset Merging**: Process multiple files into a unified dataset structure - **Integrated Exploration Tools**: Analyze and prepare data for ML workflows Run the notebook within the ``hoops_ai_cpu`` environment outlined in :doc:`/getting_started/evaluate`. The code and resources for this tutorial can be found in the `HOOPS-AI-Tutorials `__ Github repository. .. hint:: Launch ``jupyter lab notebooks/3a_ETL_pipeline_using_flow.ipynb`` from the bundle root to experiment with the sample workflow. .. toctree:: :maxdepth: 1 :titlesonly: /tutorials/hoops_ai_tutorials/notebooks/3a_ETL_pipeline_using_flow.ipynb