hoops_ai.ml.EXPERIMENTAL.flow_trainer
Classes
|
- class hoops_ai.ml.EXPERIMENTAL.flow_trainer.FlowTrainer(flowmodel=None, datasetLoader=None, batch_size=64, num_workers=0, experiment_name='UNKNOWN_Experiment', accelerator='cpu', devices='auto', gradient_clip_val=1.0, max_epochs=100, learning_rate=0.002, result_dir=None, **trainer_kwargs)
Bases:
object- Parameters:
- purify(num_processes=1, chunks_per_process=1)
Purify the datasets in parallel (if num_processes > 1) or in a single process. This method executes a forward/backward pass on a batch of size 1 to check for numerical errors (e.g., NaNs or crashes) and logs a JSON file for each processed chunk.