Supported Platforms
Environments
Platform (Minimum version) |
Architecture [#arm64]_ |
Runtime Environment |
Build Requirements |
|---|---|---|---|
Microsoft Windows 10 |
x86_64 |
v142 |
Visual Studio 2019
Minimum SDK version: v10.0.18362.0
|
Linux |
coming soon… |
coming soon… |
coming soon… |
macOS |
coming soon… |
coming soon… |
coming soon… |
Prerequisites
Technology |
(Minimum version) |
|---|---|
Miniconda x86_64 |
Latest |
CUDA for GPU support |
11.7 |
Python |
3.9 |
Microsoft Visual Studio Build and Runtime Requirements
Starting from HOOPS 2023, HOOPS Exchange migrated its compiler to Visual Studio 2019 (previously 2015). Following Microsoft’s Documentation on binary compatibility, this change implies an update to the required MSVC redistributables.
HOOPS Exchange being an explicitly shared library, the impact occurs at runtime. Any application running HOOPS Exchange such as HOOPS AI must have at least Visual Studio 2019 redistributable.
Package Description
Here is a quick description of the package :
hoops_ai
├───cadaccess
│ ├─── HOOPSLoader
│ ├─── HOOPSModel
│ ├─── HOOPSBrep
│ └─── HOOPSTools
├───cadencoder
│ └─── BrepEncoder
├───dataset
│ ├─── DatasetLoader
│ └─── DatasetExplorer
├───flowmanager
│ ├─── @flowtask Decorators
│ ├─── ParallelTask
│ ├─── SequentialTask
│ └─── ParallelExecutor
├───insights
│ ├─── DatasetViewer
│ ├─── CADViewer
│ └─── ColorPalette
├───ml
│ └───EXPERIMENTAL
│ ├─── FlowModel
│ ├─── FlowTrainer
│ └─── FlowInference
└───storage
├─── OptStorage
├─── MemoryStorage
├─── JsonStorageHandler
├─── SchemaBuilder
└─── DatasetMerger
Module Documentation
The hoops_ai package is organized into specialized modules that work together to transform CAD files into machine learning-ready datasets. For detailed documentation on each module, see the Programming Guide:
- Data Flow Management:
CAD Data Access - CAD file loading with HOOPSLoader, HOOPSModel, HOOPSBrep, and HOOPSTools
CAD Data Encoding - Feature extraction with BrepEncoder
Datasets - ML-Ready Inputs - Schema definition with SchemaBuilder
Data Storage - Data persistence with OptStorage, MemoryStorage, JsonStorageHandler, and DatasetMerger
Data Flow Customisation - Pipeline orchestration with @flowtask decorators, ParallelTask, SequentialTask, and ParallelExecutor
- Machine Learning:
Dataset Exploration and Mining - Dataset exploration with DatasetExplorer and DatasetLoader
Develop Your own ML Model - Model training with FlowModel, FlowTrainer, and FlowInference (EXPERIMENTAL)
Parts Classification Model - Part classification examples
CAD Feature Recognition Model - Feature recognition examples
- Visualization:
Data Visualization Experience - Interactive visualization with DatasetViewer, CADViewer, and ColorPalette
Next Steps
If you are already familiar with the Supported Formats page, you are now ready to discover how to Get Started with HOOPS AI.