hoops_ai.insights.DatasetViewer
- class hoops_ai.insights.DatasetViewer(file_ids, png_paths, scs_paths, file_names=None, reference_dir=None)
Bases:
objectPowerful visualization tool for exploring CAD datasets.
This class accepts lists of file IDs and their corresponding visualization paths to enable visualization of CAD files as either:
Image collages/grids using PNG previews
Interactive 3D views using stream cache files
The DatasetViewer is designed to work with data from DatasetExplorer but remains decoupled, accepting only the necessary lists for maximum flexibility.
Performance Features: - Maintains a persistent process pool (4 workers) for parallel PNG generation - Workers are pre-initialized with HOOPS licenses on creation - Significantly faster for multiple search result visualizations - Automatic cleanup via context manager or destructor
Examples:
# Get data from explorer explorer = DatasetExplorer(flow_output_file="flow.json") cache_df = explorer.get_stream_cache_paths() # Extract lists file_ids = cache_df['id'].tolist() png_paths = cache_df['stream_cache_png'].tolist() scs_paths = cache_df['stream_cache_3d'].tolist() file_names = cache_df['name'].tolist() # Create viewer viewer = DatasetViewer(file_ids, png_paths, scs_paths, file_names) # Or use convenience method viewer = DatasetViewer.from_explorer(explorer) # Query files and visualize query_ids = explorer.get_file_list(group="graph", where=lambda ds: ds['num_nodes'] > 30) viewer.show_preview_as_image(query_ids, k=25) # Use as context manager for automatic cleanup with DatasetViewer.from_explorer(explorer) as viewer: viewer.show_search_results(hits, query_file=query) # Process pool is automatically cleaned up # Or manually clean up when done viewer.close()
- Parameters:
- close()
Clean up resources, including the process pool.
Call this method when done with the DatasetViewer to free resources. After calling close(), parallel PNG generation will no longer work.
- Examples::
viewer = DatasetViewer.from_explorer(explorer) # … use viewer … viewer.close() # Clean up when done
- Return type:
None
- filter_by_availability(file_ids, require_png=False, require_3d=False)
Filter file IDs based on visualization data availability.
This is useful to ensure you only try to visualize files that have the necessary visualization data available.
- Parameters:
- Returns:
Filtered list of file IDs
- Return type:
Examples:
# Get files that have PNG previews files_with_images = viewer.filter_by_availability( all_file_ids, require_png=True ) # Get files that have both PNG and 3D fully_visualizable = viewer.filter_by_availability( all_file_ids, require_png=True, require_3d=True )
- classmethod from_explorer(explorer)
Convenience constructor to create DatasetViewer from a DatasetExplorer.
This method queries the explorer for stream cache paths and creates a DatasetViewer with the extracted data.
- Parameters:
explorer (DatasetExplorer) – DatasetExplorer instance
- Returns:
DatasetViewer instance
- Return type:
Examples:
explorer = DatasetExplorer(flow_output_file="flow.json") viewer = DatasetViewer.from_explorer(explorer) viewer.print_statistics()
- get_available_file_ids()
Get list of all file IDs that have visualization data available.
- Examples::
available_ids = viewer.get_available_file_ids() print(f”Files with visualization: {len(available_ids)}”)
- get_file_info(file_id, resolve_paths=True)
Get visualization information for a specific file ID.
- Parameters:
- Returns:
Dictionary with ‘name’, ‘png_path’, ‘stream_cache_path’ or None if not found
- Return type:
Examples:
info = viewer.get_file_info(42) print(f"File name: {info['name']}") print(f"PNG available: {info['png_path'] is not None}")
- get_statistics()
Get statistics about available visualization data.
- Returns:
Dictionary containing statistics about the dataset visualization data
- Return type:
Examples:
stats = viewer.get_statistics() print(f"Total files: {stats['total_files']}") print(f"PNG available: {stats['files_with_png']}") print(f"3D cache available: {stats['files_with_3d']}") print(f"Coverage: {stats['coverage_percentage']:.1f}%")
- print_statistics()
Print formatted statistics about visualization data availability.
Examples
>>> viewer.print_statistics()
>>> Dataset Visualization Statistics ... ═══════════════════════════════════════════════ ... Total files: 234 ... Files with PNG preview: 234 (100.0%) ... Files with 3D cache: 234 (100.0%) ... Overall coverage: 100.0%
- Return type:
None
- refresh_mapping(file_ids, png_paths, scs_paths, file_names=None)
Refresh the internal file mapping with new data.
Use this method if the dataset has been updated or you want to update the visualization paths.
- Parameters:
- Return type:
None
Examples:
# Update with new data viewer.refresh_mapping(new_ids, new_pngs, new_scs, new_names) print(f"Refreshed mapping contains {len(viewer._file_mapping)} files")
- show_preview_as_3d(file_ids, k=5, display_mode='inline', layout='grid', host='127.0.0.1', start_port=8000, silent=True, width=400, height=400)
Open interactive 3D viewers for file IDs using stream cache files.
This method creates CADViewer instances for each file, loading their 3D stream cache representations. Users can interact with the 3D models directly in the notebook.
- Parameters:
file_ids (List[int]) – List of file IDs to visualize (ints, numpy array, or convertible to int)
k (int) – Maximum number of 3D viewers to open (default: 5)
display_mode (str) – Display mode - ‘inline’, ‘sidecar’, or ‘none’ (default: ‘inline’)
layout (str) – Layout strategy - ‘sequential’ or ‘grid’ (default: ‘grid’) ‘grid’ displays viewers in a horizontal row ‘sequential’ displays viewers one after another
host (str) – Host address for viewer servers (default: ‘127.0.0.1’)
start_port (int) – Starting port for viewer servers (default: 8000)
silent (bool) – Whether to suppress viewer server output (default: True)
width (int) – Width of inline viewer in pixels (default: 400)
height (int) – Height of inline viewer in pixels (default: 400)
- Returns:
List of CADViewer instances (one per displayed file)
- Return type:
Examples:
# Open 3 compact inline 3D viewers in a grid viewers = viewer.show_preview_as_3d(file_ids, k=3) # Open larger inline viewers viewers = viewer.show_preview_as_3d( file_ids, k=3, width=600, height=500 ) # Open viewers sequentially (one after another) viewers = viewer.show_preview_as_3d( file_ids, k=5, layout='sequential' ) # Open viewers in sidecar layout (full size) viewers = viewer.show_preview_as_3d( file_ids, k=5, display_mode='sidecar' ) # Interact with specific viewer selected_faces = viewers[0].get_selected_faces() viewers[0].set_face_color(selected_faces, [255, 0, 0]) # Clean up viewers when done for v in viewers: v.terminate()
- show_preview_as_image(file_ids, k=25, grid_cols=6, figsize=(15, 5), show_labels=True, label_format='id', title=None, missing_color=(200, 200, 200), save_path=None)
Generate an image grid visualization from file IDs.
This method creates a matplotlib figure displaying PNG previews of CAD files in a grid layout. It’s perfect for quickly visualizing query results.
- Parameters:
file_ids (List[int]) – List of file IDs to visualize (ints, numpy array, or convertible to int)
k (int) – Maximum number of files to display (default: 25)
grid_cols (int | None) – Number of columns in grid. If None, auto-calculated (default: None)
figsize (Tuple[int, int] | None) – Figure size as (width, height). If None, auto-calculated (default: None)
show_labels (bool) – Whether to show file labels on images (default: True)
label_format (str) – Label format - ‘id’, ‘name’, or ‘both’ (default: ‘id’)
title (str | None) – Overall figure title (default: None)
missing_color (Tuple[int, int, int]) – RGB color for files without PNG preview (default: gray)
save_path (str | None) – If provided, save the figure to this path (default: None)
- Returns:
matplotlib Figure object
- Return type:
matplotlib.pyplot.Figure
Examples:
# Simple grid visualization fig = viewer.show_preview_as_image(file_ids, k=16) # Custom 4-column grid with names fig = viewer.show_preview_as_image( file_ids, k=20, grid_cols=4, label_format='name', title='High Complexity Parts' ) # Save to file fig = viewer.show_preview_as_image( file_ids, k=100, save_path='results/query_visualization.png' )
- show_search_results(hits, query_file=None, output_dir=None, k=None, grid_cols=4, figsize=None, show_scores=True, show_filenames=True, title='CAD Similarity Search Results', missing_color=(200, 200, 200), save_path=None, is_white_background=True, overwrite=True)
Visualize CAD similarity search results from vector search hits.
This method takes VectorHit objects (from CADSearch.search_by_shape()), generates PNG previews on-the-fly from CAD files, and displays them in a grid with similarity scores.
Unlike show_preview_as_image() which uses pre-existing PNGs, this method: - Loads CAD files from paths stored in hit.id - Generates stream cache PNGs on-the-fly - Displays similarity scores alongside images - Perfect for visualizing search results
- Parameters:
hits (List[Any]) – List of VectorHit objects from CADSearch (each has .id, .score, .metadata)
query_file (str | None) – Optional path to query CAD file to display on the left (default: None)
output_dir (str | None) – Directory to save generated PNG files (default: current_dir/out)
k (int | None) – Maximum number of hits to display. If None, shows all hits (default: None)
grid_cols (int | None) – Number of columns in grid for hits (default: 4)
figsize (Tuple[int, int] | None) – Figure size as (width, height). If None, auto-calculated
show_scores (bool) – Whether to show similarity scores on images (default: True)
show_filenames (bool) – Whether to show filename labels (default: True)
title (str | None) – Overall figure title (default: “CAD Similarity Search Results”)
missing_color (Tuple[int, int, int]) – RGB color for files that fail to load (default: gray)
save_path (str | None) – If provided, save the figure to this path (default: None)
is_white_background (bool) – Use white background for PNG export (default: True)
overwrite (bool) – Overwrite existing PNGs if they exist (default: True)
- Returns:
matplotlib Figure object
- Return type:
matplotlib.pyplot.Figure
Examples:
# Basic usage with CADSearch results from hoops_ai.ml import CADSearch searcher = CADSearch(shape_model=embedder) searcher.load_shape_index("my_index.faiss") hits = searcher.search_by_shape("query.step", top_k=10) # Visualize results viewer = DatasetViewer([], [], []) # Empty initialization for search results fig = viewer.show_search_results(hits) # Customize display fig = viewer.show_search_results( hits, k=16, grid_cols=4, title="Top Similar Gears", output_dir="search_results" ) # Show more results without scores fig = viewer.show_search_results( hits, k=25, grid_cols=5, show_scores=False, save_path="results.png" )
Note
This method requires CAD files to be accessible at the paths stored in hit.id. It will load each file and generate a PNG preview, which may take time for large datasets.