hoops_ai.insights.DatasetViewer
- class hoops_ai.insights.DatasetViewer(file_ids, png_paths, scs_paths, file_names=None)
Bases:
objectPowerful visualization tool for exploring CAD datasets.
This class accepts lists of file IDs and their corresponding visualization paths to enable visualization of CAD files as either:
Image collages/grids using PNG previews
Interactive 3D views using stream cache files
The DatasetViewer is designed to work with data from DatasetExplorer but remains decoupled, accepting only the necessary lists for maximum flexibility.
Examples:
# Get data from explorer explorer = DatasetExplorer(flow_output_file="flow.json") cache_df = explorer.get_stream_cache_paths() # Extract lists file_ids = cache_df['id'].tolist() png_paths = cache_df['stream_cache_png'].tolist() scs_paths = cache_df['stream_cache_3d'].tolist() file_names = cache_df['name'].tolist() # Create viewer viewer = DatasetViewer(file_ids, png_paths, scs_paths, file_names) # Or use convenience method viewer = DatasetViewer.from_explorer(explorer) # Query files and visualize query_ids = explorer.get_file_list(group="graph", where=lambda ds: ds['num_nodes'] > 30) viewer.show_preview_as_image(query_ids, k=25)
- Parameters:
- filter_by_availability(file_ids, require_png=False, require_3d=False)
Filter file IDs based on visualization data availability.
This is useful to ensure you only try to visualize files that have the necessary visualization data available.
- Parameters:
- Returns:
Filtered list of file IDs
- Return type:
Examples:
# Get files that have PNG previews files_with_images = viewer.filter_by_availability( all_file_ids, require_png=True ) # Get files that have both PNG and 3D fully_visualizable = viewer.filter_by_availability( all_file_ids, require_png=True, require_3d=True )
- classmethod from_explorer(explorer)
Convenience constructor to create DatasetViewer from a DatasetExplorer.
This method queries the explorer for stream cache paths and creates a DatasetViewer with the extracted data.
- Parameters:
explorer (DatasetExplorer) – DatasetExplorer instance
- Returns:
DatasetViewer instance
- Return type:
Examples:
explorer = DatasetExplorer(flow_output_file="flow.json") viewer = DatasetViewer.from_explorer(explorer) viewer.print_statistics()
- get_available_file_ids()
Get list of all file IDs that have visualization data available.
- Examples::
available_ids = viewer.get_available_file_ids() print(f”Files with visualization: {len(available_ids)}”)
- get_file_info(file_id)
Get visualization information for a specific file ID.
- Parameters:
file_id (int) – File ID to query (int or convertible to int)
- Returns:
Dictionary with ‘name’, ‘png_path’, ‘stream_cache_path’ or None if not found
- Return type:
Examples:
info = viewer.get_file_info(42) print(f"File name: {info['name']}") print(f"PNG available: {info['png_path'] is not None}")
- get_statistics()
Get statistics about available visualization data.
- Returns:
Dictionary containing statistics about the dataset visualization data
- Return type:
Examples:
stats = viewer.get_statistics() print(f"Total files: {stats['total_files']}") print(f"PNG available: {stats['files_with_png']}") print(f"3D cache available: {stats['files_with_3d']}") print(f"Coverage: {stats['coverage_percentage']:.1f}%")
- print_statistics()
Print formatted statistics about visualization data availability.
Examples
>>> viewer.print_statistics()
>>> Dataset Visualization Statistics ... ═══════════════════════════════════════════════ ... Total files: 234 ... Files with PNG preview: 234 (100.0%) ... Files with 3D cache: 234 (100.0%) ... Overall coverage: 100.0%
- Return type:
None
- refresh_mapping(file_ids, png_paths, scs_paths, file_names=None)
Refresh the internal file mapping with new data.
Use this method if the dataset has been updated or you want to update the visualization paths.
- Parameters:
- Return type:
None
Examples:
# Update with new data viewer.refresh_mapping(new_ids, new_pngs, new_scs, new_names) print(f"Refreshed mapping contains {len(viewer._file_mapping)} files")
- show_preview_as_3d(file_ids, k=5, display_mode='inline', layout='sequential', host='127.0.0.1', start_port=8000, silent=True, width=400, height=400)
Open interactive 3D viewers for file IDs using stream cache files.
This method creates CADViewer instances for each file, loading their 3D stream cache representations. Users can interact with the 3D models directly in the notebook.
- Parameters:
file_ids (List[int]) – List of file IDs to visualize (ints, numpy array, or convertible to int)
k (int) – Maximum number of 3D viewers to open (default: 5)
display_mode (str) – Display mode - ‘inline’, ‘sidecar’, or ‘none’ (default: ‘inline’)
layout (str) – Layout strategy - ‘sequential’ or ‘grid’ (default: ‘sequential’) Note: ‘grid’ not yet implemented, uses sequential
host (str) – Host address for viewer servers (default: ‘127.0.0.1’)
start_port (int) – Starting port for viewer servers (default: 8000)
silent (bool) – Whether to suppress viewer server output (default: True)
width (int) – Width of inline viewer in pixels (default: 400)
height (int) – Height of inline viewer in pixels (default: 400)
- Returns:
List of CADViewer instances (one per displayed file)
- Return type:
Examples:
# Open 3 compact inline 3D viewers (forms a grid-like layout) viewers = viewer.show_preview_as_3d(file_ids, k=3) # Open larger inline viewers viewers = viewer.show_preview_as_3d( file_ids, k=3, width=600, height=500 ) # Open viewers in sidecar layout (full size) viewers = viewer.show_preview_as_3d( file_ids, k=5, display_mode='sidecar' ) # Interact with specific viewer selected_faces = viewers[0].get_selected_faces() viewers[0].set_face_color(selected_faces, [255, 0, 0]) # Clean up viewers when done for v in viewers: v.terminate()
- show_preview_as_image(file_ids, k=25, grid_cols=6, figsize=(15, 5), show_labels=True, label_format='id', title=None, missing_color=(200, 200, 200), save_path=None)
Generate an image grid visualization from file IDs.
This method creates a matplotlib figure displaying PNG previews of CAD files in a grid layout. It’s perfect for quickly visualizing query results.
- Parameters:
file_ids (List[int]) – List of file IDs to visualize (ints, numpy array, or convertible to int)
k (int) – Maximum number of files to display (default: 25)
grid_cols (int | None) – Number of columns in grid. If None, auto-calculated (default: None)
figsize (Tuple[int, int] | None) – Figure size as (width, height). If None, auto-calculated (default: None)
show_labels (bool) – Whether to show file labels on images (default: True)
label_format (str) – Label format - ‘id’, ‘name’, or ‘both’ (default: ‘id’)
title (str | None) – Overall figure title (default: None)
missing_color (Tuple[int, int, int]) – RGB color for files without PNG preview (default: gray)
save_path (str | None) – If provided, save the figure to this path (default: None)
- Returns:
matplotlib Figure object
- Return type:
matplotlib.pyplot.Figure
Examples:
# Simple grid visualization fig = viewer.show_preview_as_image(file_ids, k=16) # Custom 4-column grid with names fig = viewer.show_preview_as_image( file_ids, k=20, grid_cols=4, label_format='name', title='High Complexity Parts' ) # Save to file fig = viewer.show_preview_as_image( file_ids, k=100, save_path='results/query_visualization.png' )