hoops_ai.create_flow
- hoops_ai.create_flow(name, tasks, flows_outputdir, max_workers=None, ml_task=None, debug=False, auto_dataset_export=True, export_visualization=True)
Module-level flow creation function with simplified parameters.
- Parameters:
name (str) – Name of the flow
flows_outputdir (str) – Output directory for flow results
max_workers (int) – Number of parallel workers (None = auto-detect CPU count)
ml_task (str) – Optional ML task description
debug (bool) – Enable debug logging
auto_dataset_export (bool) – Automatically inject dataset export task
export_visualization (bool) – Export visualization resources (stream cache, PNG) for each processed file
- Returns:
Configured Flow instance
Example:
import hoops_ai from hoops_ai.flowmanager import flowtask @flowtask.transform(name="encode", parallel_execution=True) def my_encoder(cad_file, cad_loader, storage): # transformation logic return face_count, edge_count flow = hoops_ai.create_flow( name="my_flow", tasks=[my_encoder], flows_outputdir="./output", max_workers=4 )