Logo

Getting Started

  • Technical Overview
  • File Formats
  • Supported Platforms
  • Evaluate & Install

Programming Guide

  • CAD Fundamentals
    • Overview
    • What is CAD?
    • Types of CAD Representations
      • Boundary Representation (B-rep)
      • Mesh Representation
    • B-rep Topology Hierarchy
      • The B-rep Hierarchy
      • Vertices
      • Edges
      • Faces
      • Shells
      • Bodies (Solids)
      • Model (Assembly)
    • B-rep Topology vs. Geometry
      • Topology
      • Geometry
    • UV Grids: Sampling Face Geometry
      • What are UV Coordinates?
      • UV Grids in Machine Learning
    • Face Adjacency Graphs
      • What is a Face Adjacency Graph?
      • Building Face Adjacency Graphs
      • Graph Properties for ML
    • From CAD to Graph Neural Networks
      • Mapping B-rep to GNN
    • Advanced B-rep Concepts
      • Dihedral Angles
      • Surface Curvature
      • Machining Features
    • CAD File Formats
    • Coordinate Systems and Units
      • Coordinate System
      • Units
    • Best Practices for CAD ML
      • 1. Understand Your Data
      • 2. Normalize Features
      • 3. Handle Variable Graph Sizes
      • 4. Augmentation for CAD Data
      • 5. Feature Selection
    • Next Steps
  • Machine Learning Fundamentals
    • Overview
    • What is Machine Learning?
      • Types of Machine Learning Tasks
    • Neural Networks Basics
      • What is a Neural Network?
      • Key Components
      • Training Process
    • Graph Neural Networks (GNNs)
      • Why GNNs for CAD Data?
      • Graph Representation of CAD Models
      • How GNNs Work
      • Common GNN Architectures
      • Point Cloud Networks
      • Convolutional Neural Networks (CNNs)
      • Hybrid Architectures for CAD
    • PyTorch and PyTorch Lightning
      • PyTorch Basics
      • PyTorch Lightning
    • DGL: Deep Graph Library
      • DGL Graph Structure
    • PyTorch Geometric: Alternative Graph Library
      • When You Might See PyTorch Geometric
      • PyG Graph Structure
    • Loss Functions
      • Cross-Entropy Loss (Classification)
      • Binary Cross-Entropy (Node Classification)
      • Mean Squared Error (Regression)
    • Advanced Concepts
      • Transfer Learning and Domain Adaptation
      • Regularization Techniques
      • Attention Mechanisms
      • Self-Supervised Learning
    • Best Practices for CAD Machine Learning
      • Data Quality
      • Feature Engineering
      • Model Training
      • Debugging ML Models
    • Resources and Further Reading
    • Next Steps
  • Data Flow Management
    • CAD Data Access
    • CAD Data Encoding
    • Datasets - ML-Ready Inputs
    • Data Storage
      • Data Merging in HOOPS AI
    • Data Flow Customisation
      • Flow module - Quick Reference
  • Machine Learning Model
    • Dataset Exploration and Mining
    • Parts Classification Model
    • CAD Feature Recognition Model
    • Develop Your own ML Model
  • Data Visualization Experience

Python API Reference

  • hoops_ai Module
    • hoops_ai.cadaccess
      • hoops_ai.cadaccess.HOOPSLoader
      • hoops_ai.cadaccess.HOOPSModel
      • hoops_ai.cadaccess.HOOPSTools
      • hoops_ai.cadaccess.HOOPSBrep
      • hoops_ai.cadaccess.HOOPSMesh
    • hoops_ai.cadencoder
      • hoops_ai.cadencoder.BrepEncoder
    • hoops_ai.dataset
      • hoops_ai.dataset.DatasetExplorer
      • hoops_ai.dataset.DatasetLoader
      • hoops_ai.dataset.CADDataset
      • hoops_ai.dataset.TorchCADDataset
      • hoops_ai.dataset.GraphDataset
    • hoops_ai.flowmanager
      • hoops_ai.flowmanager.flow
      • hoops_ai.flowmanager.flow_builder
      • hoops_ai.flowmanager.ParallelExecutor
    • hoops_ai.ml
      • hoops_ai.ml.EXPERIMENTAL
      • hoops_ai.ml.FlowInference
      • hoops_ai.ml.FlowTrainer
      • hoops_ai.ml.FlowModel
      • hoops_ai.ml.MetricExplorer
    • hoops_ai.storage
      • hoops_ai.storage.datasetstorage
      • hoops_ai.storage.DataStorage
      • hoops_ai.storage.MemoryStorage
      • hoops_ai.storage.MLStorage
      • hoops_ai.storage.DGLGraphStoreHandler
      • hoops_ai.storage.LabelStorage
      • hoops_ai.storage.MetricStorage
      • hoops_ai.storage.CADFileRetriever
      • hoops_ai.storage.LocalStorageProvider
      • hoops_ai.storage.convert_storage
    • hoops_ai.insights
      • hoops_ai.insights.utils
      • hoops_ai.insights.CADViewer
      • hoops_ai.insights.DatasetViewer
      • hoops_ai.insights.quick_view
    • hoops_ai.set_license
    • hoops_ai.get_license_info
    • hoops_ai.use_test_license
    • hoops_ai.create_flow

Tutorials

  • 1. Accessing a CAD File
    • HOOPS AI: CAD Access Module
    • Holes extraction for certain Files.
    • Interactive 3D Visualization with HOOPS AI Insights
  • 2. Encoding a CAD File
    • View your cad model in the notebook
    • HOOPS AI: Encoder Module
    • BRep data as numerical features for ML
    • Encoding the Geometry
    • Encoding the attributes
  • 3. HOOPS AI - Minimal ETL Demo
    • HOOPS AI - Minimal ETL Demo
    • DATA SERVING : Use the DatasetExplorer to navigate your data
  • 4. Fabwave - Part Classification using HOOPS AI
    • Fabwave - Part Classification using HOOPS AI
    • Data Transformation : Encoded data to be used as ml input
    • Machine Learning Training
  • 5. Data Mining a 5K CAD Dataset
    • Use the Dataset Explorer to navigate the dataset
    • Gather files that fulfilled a given condition. Filter
    • Query data for single file
  • 6. Data Mining a 162K CAD Dataset
    • HOOPS AI: Use the Dataset Explorer to navigate the dataset
    • Gather files that fulfilled a given condition. Filter
    • Query data for single file
    • Create subsets (train, validation, test) based on the label distribution
  • 7. Train a Machine Learning Model For Parts Classification
    • HOOPS AI: EXPERIMENTAL - Flow Trainer
    • Make inference, test your current trained model
  • 8. Infer Features using CAD as Input
    • HOOPS AI: Using a Pre-trained Model
    • ML prediction
    • Visualize Predictions on CAD Model
    • A second case

Additional Resources

  • Release Notes
    • HOOPS AI 1.0-preview
    • Fixed Bugs List
  • Public Roadmap
  • Acknowledgments
  • Distribute Your Application
  • Downloads
  • Glossary
  • Archives

Support

  • Forum
  • Knowledge Base
  • Support
  • Contact Us
HOOPS AI
  • Search


© Copyright 2025, Tech Soft 3D

Welcome Conversation saved
HOOPSY BETA

Hello! I'm HOOPSY

Your multilingual generative AI assistant for documentation. Ask me anything about HOOPS AI in your own language, or choose a sample question below to start a conversation:

What is HOOPS AI?
What are the latest release notes for HOOPS AI?
How do I start evaluating HOOPS AI?
How do I write my first sample application?
How can I get assistance?

HOOPSY may store conversations according to OpenAI's policy. Responses may not always be accurate.

HOOPSY is thinking...
Return to top