hoops_ai.ml.embeddings.EmbeddingBatch

class hoops_ai.ml.embeddings.EmbeddingBatch(values, model, dim, ids=None, metadata=None)

Bases: object

Batch embedding result for multiple inputs.

Parameters:
  • values (numpy.ndarray) – Embedding matrix of shape (n, dim), dtype float32

  • model (str) – Model identifier (e.g., ‘hf:all-MiniLM-L6-v2’, ‘hoops:shape-v1’)

  • dim (int) – Dimensionality of each embedding vector

  • ids (List[str] | None) – Optional identifiers for each embedding in the batch

  • metadata (Dict[str, Any]) – Optional batch-level diagnostics

classmethod from_arrays(embeddings, model='unknown', ids=None, metadata=None)

Create EmbeddingBatch from xarray or numpy arrays.

Parameters:
  • embeddings (xarray.DataArray | numpy.ndarray) – Embedding matrix (xr.DataArray or np.ndarray) with shape (n, dim)

  • model (str) – Model identifier string

  • ids (xarray.DataArray | numpy.ndarray | List[str] | None) – Optional part IDs (xr.DataArray, np.ndarray, or List[str])

  • metadata (Dict[str, Any] | None) – Optional batch-level metadata

Returns:

EmbeddingBatch instance

Raises:
  • TypeError – If arrays are not of supported types

  • ValueError – If embedding array is not 2D

Return type:

EmbeddingBatch

dim: int
ids: List[str] | None = None
metadata: Dict[str, Any] = None
model: str
values: numpy.ndarray