hoops_ai.ml.embeddings.EmbeddingBatch
- class hoops_ai.ml.embeddings.EmbeddingBatch(values, model, dim, ids=None, metadata=None)
Bases:
objectBatch embedding result for multiple inputs.
- Parameters:
values (numpy.ndarray) – Embedding matrix of shape (n, dim), dtype float32
model (str) – Model identifier (e.g., ‘hf:all-MiniLM-L6-v2’, ‘hoops:shape-v1’)
dim (int) – Dimensionality of each embedding vector
ids (List[str] | None) – Optional identifiers for each embedding in the batch
metadata (Dict[str, Any]) – Optional batch-level diagnostics
- classmethod from_arrays(embeddings, model='unknown', ids=None, metadata=None)
Create EmbeddingBatch from xarray or numpy arrays.
- Parameters:
embeddings (xarray.DataArray | numpy.ndarray) – Embedding matrix (xr.DataArray or np.ndarray) with shape (n, dim)
model (str) – Model identifier string
ids (xarray.DataArray | numpy.ndarray | List[str] | None) – Optional part IDs (xr.DataArray, np.ndarray, or List[str])
metadata (Dict[str, Any] | None) – Optional batch-level metadata
- Returns:
EmbeddingBatch instance
- Raises:
TypeError – If arrays are not of supported types
ValueError – If embedding array is not 2D
- Return type:
- values: numpy.ndarray